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ABSTRACT

We consider Ellingman’s and Zhao’s method of proving that every 4 representative
graph embedding on the double torus contains a Non-Contractible Separating Cy-
cle (NSC). They proved this main result by considering critical embeddings; which
are embeddings that are very close to having NSCs. We adopt the method in prov-
ing an extension of the same theorem to a surface of one genus higher; the triple
torus. The method works efficiently in proving our main result that every 4 rep-
resentative embedding on the triple torus contains two NSCs which separates the
triple torus into 3 connected components, namely punctured tori, two of them
with one boundary circle and one with two boundary circles. Our results are ob-
tained by employing equivalence of embeddings and homeomorphism of surfaces

to Ellingman and Zhao’s method.
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CHAPTER 1

INTRODUCTION

This chapter presents terminologies and some notations that will be used in subse-
quent chapters and sections of the thesis. We first present terminologies on graphs,
surfaces, and embeddings of graphs on surfaces in the background. We also present
objectives of the study, problem statement and significance of the study in this

chapter.

1.1 Background

1.1.1 Graphs
A graph G is a pair of sets, V(G) and E(G), where V(&) is nonempty and F(G)
is a set of 2-element subsets of V(). A directed graph G is an ordered pair G =
(V(G), A(@)) consisting of a set V= V(G) of vertices and a set A = A(G) of arcs,
together with an incidence function v that associates with each arc of G an or-
dered pair of vertices of G. The number of vertices, n = |V (G)]|, is the order of the graph
G . Awalkinthe graph G = (V, E) is a finite sequence of the form v; , €;,, i, , €, - - . , €, Vi, ,

which consists of alternating vertices and edges of G.



The walk starts at a vertex. A walk is open if v;, # v;,. We refer the reader to [11,

4] for further details.

The graph G is disconnected if it is the disjoint union of two other graphs and
connected otherwise. A connected graph is said to be k-vertex connected if it has
more than £ vertices and remains connected whenever fewer than k vertices are
removed. The vertex connectivity or just connectivity of a graph G is the largest &

for which the graph is k-vertex-connected, we refer to [4].

Two edges with a common end are said to be adjacent. An isomorphism of graphs
G and H is a 1-1 mapping ¢ of V(G) onto V(H) such that adjacent pairs of vertices
of G are mapped to adjacent vertices in H, and nonadjacent pairs of vertices have
nonadjacent images. Two graphs G and H are said to be isomorphic if there is
an isomorphism between G and H. If G = H then G and H are isomorphic, see

[11].

A graph is planar if it can be drawn in the plane in such a way that no edges
intersect, except of course at a common end vertex. In other words planar graphs
are embeddable on the plane. While non planar graphs cannot be embedded on the

plane, they can be embeddable on surfaces other than the plane, see [11].

1.1.2 Surfaces
Graphs can be studied on the sphere (plane), or on other surfaces. A surface is
a compact two-dimensional manifold, possibly with boundary. Equivalently, a sur-

face is a compact topological space that is Hausdorff (any two distinct points have



disjoint neighbourhoods) and such that every point has a neighbourhood homeo-
morphic to a plane or a closed half plane. If each point of a surface has a neighbour-
hood homeomorphic to the plane, such a surface is closed, otherwise it is called a

punctured surface or a surface with boundary, see [11].

If ¥ is a punctured surface, then a point p on the surface whose neighbourhoods
are homeomorphic to the upper half plane is said to be a boundary point. The
union of boundary points of ¥ is a collection of circles. These circles are bound-
ary components of >. The genus of a connected, orientable surface is an integer
representing the maximum number of cuttings along non-intersecting closed sim-
ple curves without rendering the resultant manifold disconnected, we refer to [6,

4].

Examples of surfaces include sphere, cylinder, disk, torus, double torus, Mobius
strip, Klein bottle and the projective plane among others. Some surfaces are shown

in figure 1.1.
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(f) Double torus (top),
Triple torus (bottom)

(d) Mobius strip (e) Klein bottle

Figure 1.1: Some examples of surfaces, see [4].

A surface is non-orientable if some subset of it (with induced topology) is homeo-
morphic to the Mobius strip, otherwise it is orientable [6]. Table 1.1 shows a brief

classification of common surfaces.

Table 1.1: Classification of surfaces, see [4].

Surface Orientable? Genus No. of boundary components
Sphere yes 0 0
Disk yes 0 1
Torus yes 1 0
Double Torus yes 2 0
Triple Torus yes 3 0
Mobius strip no 1 0
Klein bottle no 2 0

Given two topological surfaces ¥, and ¥, the map h : ¥, — ¥, is a homeomorphism
if h is bijective and smooth (both 4 and its inverse are smooth). For any two closed

connected surfaces ¥, and ¥, then such surfaces are homeomorphic if and only if



they are both orientable or both non-orientable and they have the same genus. This

implies that every surface is homeomorphic to itself, see [4].

A path on a surface ¥ is a continuous map P : [0,1] — X. Its two endpoints are
P(0) and P(1). Aloop is a path whose two end points are equal. A closed curve on

¥ is a continuous map from the unit circle S* to ¥, also called a cycle, we refer to

[4].

1.1.3 Graphs on Surfaces
There are two definitions of graph embeddings, one is topological and the other
combinatorial. In the topological sense, let G be a graph and X a surface. Then

the embedding of G onto X can be viewed as a continuous map ¥ : G — %, see

[4].

Combinatorically, an embedding ¥ of a graph G on a surface X is a crossing free
drawing of G on Y. It maps the vertices of GG to distinct points of ¥ and its edges
to paths of ¥ whose endpoints are images of their incident vertices. The face of
an embedding V is a connected component of the complement of the image of ¥
as a map. A cellularly embedded graph G = (V(G), E(G)) C ¥ is a graph drawn
in a surface ¥ such that its edges only intersect at their ends and each connected

component of ¥\G is homeomorphic to a disk, we refer to [6].

The connected components of ¥\ G when viewed as subsets of ¥, are called faces of
G. Two embeddings V¥, : G — ¥, and ¥, : G — ¥, are strictly equivalent if there

is a homeomorphism A : ¥, — ¥, such that ¥, = h o ¥,. For a cellular embedding,



two cellular embeddings of a graph G are equivalent if and only if their faces have

same boundaries, see [13].

Y.-facial walks (or simply Y-faces) are closed walks in the graph which correspond
to traversals of face boundaries of the topological embedding related to ¥. In
that sense, two embeddings are equivalent if they have the same facial walks. Let
F (3, G) be the set of 3-facial walks. The number x(X) = |V(G)|—|E(G)|+|F (2, G)|

is called the Euler characteristic of the embedding of GG onto 3, we refer to [9].

A circle in a surface is a simple closed curve and an arc is a simple non-closed
curve including its end points. There are 3 types of such cycles; contractible, non-
contractible and surface separating. A cycle on a surface is contractible if it can
be continuously deformed to a point without leaving the surface, otherwise it is
non-contractible. It is separating if cutting the surface along such a cycle splits
the surface into two connected components, otherwise it is non-separating, see

[4].

Two cycles on a surface are homotopic if there is a continuous deformation of one
onto the other, that is, if there is a continuous function from the cylinder S* x [0, 1]
to ¥ such that each boundary of the cylinder is mapped to one of the loops. In that
sense, a cycle is contractible if it is homotopic to a constant loop (one whose image

is a single point), see [2].

Figure 1.2 shows such 3 types of cycles; contractible (right), non-contractible and

separating (center) and non-separating (left).



Figure 1.2: The three types of cycles on a double torus.

Suppose that C' is a surface non-separating cycle of a ¥-embedded graph G. If C'is
Y-two-sided, let G be the graph obtained from G by replacing C' with two copies of
C' such that all edges on the left side of C' are incident with one copy of C' and all
edges on the right side of C are incident with the other copy of C. We say that G is

obtained from G by cutting (or X-cutting) along the cycle C, we refer to [11].

Representativity of an embedding, or face width of a graph embedding is the small-
est number of points in which any non-contractible closed curve on a surface in-
tersects the graph. Let G be a graph, X be a surface, and ¥ : G — X be an
embedding of G in X. Representativity of an embedding can also be defined as a
set p(VU) = min{|[' N G| : T is a Non-contractible simple closed curve on ¥}. An

embedding is critical if it is very close to having and NSC, see [13, 5].

A single point is not considered to be an arc. The interior )° of an arc () consists of
an arc and its end points deleted. If a graph is embedded in a surface, each cycle
of the graph is embedded as a circle, and each nontrivial (not a single vertex) path
as an arc. A section of an arc or a circle on a surface is a subarc or single point

contained in the arc or circle, we refer to [5].



T is used to denote the torus (a sphere with one handle). A graph G is toroidal
if G embeds in 7. Let ¥ be an embedding of G = G(¥) in 7. The closure of
each connected component of 7\G(¥) is called a face of ¥ (closed faces are mostly
preferred to open ones ). The face set of an embedding ¥ in 7" is denoted by F'(V).
If the graph is 2-connected and p(V) > 2 then each face f is bounded by a cycle,
called a facial cycle and is denoted by 0f. d.X denotes the boundary of a set X C 7.
Two vertices x and y are cofacial by a face f if x,y € 0f. Embeddings with p(¥) > 4

have all faces bounded by cycles in graphs, see [13].

If D is a closed disk of T" with boundary contained in G, then 9D (the boundary of
D)isacycleof G. Let f € F'(V) be a face of ¥. The symmetric differences of Jf and
all the facial cycles incident to f is a union of cycles of GG, and because p(¥) > 4,
one of these cycles bounds a disk containing f together with all the faces incident
to f. Such disk is named D, which is also called the second disk of f. It was noted
that the second disk Dy consists of the face f, all faces incident to f, and all faces

that are surrounded by f, we refer to [10].

A segment of a path or a cycle in a graph is a subpath, which may consist of just a
single vertex. If a, b are sections of an oriented arc or oriented circle ) then aQb
denotes the part of () from the last point of a to the first point of b, inclusive. Q!
denotes () traversed in the opposite direction. The number of components of a set
S on a surface ¥ is denoted || S ||. For convinience, all topological sets are dealt
with as closed sets, that is they include their boundaries. Contractible circles on

T have natural clockwise orientation and non-contractible circles must be given an



orientation, see [5].

1.2 Motivation

Several authors have written on cycles of graphs embedded on surfaces. Erickson
wrote on an algorithm used to compute shortest essential cycle of graphs embedded
on orientable combinatorial surfaces, see [7]. Ellingman N.& Zha. X, see [5], wrote
on existence of NSCs in graph embeddings on surfaces. They proved that every

4-representative graph embedded on a double torus contains a NSC.

In this thesis, we wish to explore the existence of Non-contractible separating cy-
cles in 4-representative graphs embedded on a triple torus. We seek to prove that
every 4-representative graph embedded on a triple torus has two NSCs which to-
gether splits the surface into 3 connected components. Zha proved that every 6-
representative embedding on a suitable orientable surface has an NSC, see [13].
We choose to work with 4-representative graph embeddings because it is possible
to raise a 4-representative embedding to 6-representative by performing a series of
augmentations. After raising the representativity from 4 to 6, at that point we are

sure that a NSC exists, see [5].

We will consider Ellingma’s and Zhao’s method of proving that every 4-representative
graph embedded on the double torus has NSC. By using equivalence of embeddings
and homeomorphism of surfaces we extend their method to embeddings on a triple

torus to prove our main theorem.



1.3 Statement of the problem

Graphs on surfaces is one of the interesting and emerging fields under graph theory.
In recent decades, it has sparked research with many studies focusing on cycles
of embedded graphs. Many authors have studied existence of Non Contractible
Separating cycles of graphs embedded on suitable surfaces, which are defined to be

those with genus at least 2.

When a graph is embedded on a surface, many questions may arise including the
existence of cycles on the embedding and the nature of such cycles. For example,
Ren studied cycle bases of embedded graphs. He argued that in graph embedding
theory, a branch of topological graph theory, cycle operations have particular uses,

see [12].

Some authors including Erickson & Hubard have written on finding shortest cycles
of embedded graphs. These are cycles with minimum face widths of all other cycles
of such embedded graphs. Under this adventure, the problem of finding shortest
paths in non embedded graphs can be reflected but with a minor difference that

such paths will be closed arcs on surfaces, see [7] and [8]

The field of manifolds which tries to perform calculus on abstract surfaces can also
be well understood by studying cycles of embedded graphs. The concept of triangu-
lation of surfaces is also well explained by studying cycles since triangulations are

just subsets of 3-representative embeddings, see [5].

10



Now coming to non-contractible separating cycles on embedded graphs, authors
have studied them on embedded graphs with the help of representativity of embed-
dings. Ellingman studied NSCs of graphs embedded on a torus, the suitable surface
of genus 2. They proved that every 4- representative embedding on the double
torus contains an NSC, see [5]. However they did not suggest a possible extension
of their theorem to a surface of one genus higher, the triple torus. We find it an
interesting adventure to study whether the line of argument in their proof could

apply to a triple torus.

1.4 Research objectives

1.4.1 Main objective
The main objective of this study is to prove that every 4 representative graph em-
bedding on the triple torus contains two non contractible separating cycles which

separates the triple torus into 3 connected components.

1.4.2 Specific objectives

Specifically, the objectives of the study are;

(i) To analyse Ellingman’s and Zhao’s method of proving that every 4 represen-
tative embedding on the double torus contains a non-contractible separating

cycle which separates the double torus into 2 connected components.

(ii) To apply Ellingman’s and Zhao’s method in proving that every 4 representative

embedding on the triple torus contains 2 non-contractible separating cycles

11



which separates the surface into 3 connected components

1.5 Significance of the study

The study of graphs on surfaces is of great significance in the field of graph theory. It
gives a good link between the field of topology and that of graph theory, giving good
insight into topological graph theory. On the other hand, it serves as a connection
between the fields of combinatorics and graph theory which in turn gives an insight
into Combinatorial graph theory. This makes it possible for both experts of topology

and algebra to come together in understanding graph theory.

In topological graph theory, cycles of embedded graphs are of great interest. An un-
derstanding of cycles of graphs shall lead to an understanding of cycles on surfaces.
This is significant since graph embeddings are topologically understood as maps
into surfaces. Cycles of embedded graphs help in understanding representativity of
embeddings since they create faces on surfaces and such faces play a pivotal role in

defining reperesentativity of embeddings.

Studying graph embeddings is crucial and has some applications in the real world.
The goals of graph embedding, such as minimizing edge crossings align very well
with the objectives of mesh untangling. Meshes are a variety of graphs used to
represent surfaces with a wide number of applications, particularly in simulation

and modelling.

Non Contractibe separating cycles are the most interesting cycles of embedded

graphs since they cannot be reduced to a single point on the surface and also

12



because they separate surfaces leading to more interesting results. This study is
significant since proving existence of NSCs in embeddings on the triple torus can
lay a good foundation to the study of cycles of graphs embedded on surfaces of

higher genus and on some other higher dimensional manifolds.

1.6 Limitations of the study

In literature most authors wrote on conditions for existence of NSCs in embedded
graphs. Zha proved that every 6-representative embedding on a suitable orientable
surface has an NSC, see [13]. We build our proof on this result by perfoming a
series of augmentations on our 4-representative embeddings in order to raise the
representativity to 6 at which point an NSC exists. These series of augmentations

may tamper with the embedding if not well executed.

1.7 Organisation of the thesis

In chapter 2 we give a review of literature which focuses on conditions for exis-
tence of NSCs in graph embeddings and those that have proven existence of NSCs
in graph embeddings under such conditions. Next in chapter 3 we lay technical def-
initions of essential arcs, punctured tori and triple torus. These will help us look at
lemmas that will be used in proving our main theorem that every 4-representative
embedding on the tripe torus contains two NSCs. Non-contractible separating cy-
cles and critical embeddings are looked at in chapter 4. Finally, in chapter 5 we give

conclusion and a brief discussion of the findings.

13



It is found that Ellingman & Zhao’s method of proving that every 4-representative
embedding on the double tori contains an NSC works efficiently in proving existence

of NSCs in 4-representative graph embeddings on the triple tori.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review some literature on conditions for existence of NSCs in
graph embeddings and those that have proven existence of NSCs in graph embed-

dings under such conditions.

Some authors have written on graph embeddings focusing on existence of NSCs of
embedded graphs on surfaces. They have explored conditions for existence of NSCs
of embedded graphs and some have proven existence of NSCs in graph embeddings
under such conditions. Most of these conditions involve representativity or face
width of graph embeddings. The representativity of an embedding V is denoted

p(¥) and V is k-representative if p(V) > k.

Ellingman N. & Zha X in [5] conjectured that if a graph G is embedded on a
surface of genus (orientable or non orientable) at least 2, then it may have a Non
contractible separating cycle (NSC). According to this conjecture, a triple torus falls
within such surfaces. Since this condition is not sufficient and cannot guarantee
existence of NSCs, they argued that sufficient conditions for existence of an NSC in

embeddings are of interest.

15



They defined a suitable surface as one of genus (orientable or non orientable) at
least 2. This implies that a triple torus is a suitable surface. Barnette (1980) conjec-
tured that every triangulation in a suitable orientable surface has an NSC. Ellingman
N. & Zha X in [5], further proposed that any triangulation of the double torus whose
shortest Non-contractible cycle with length at least 4 has a Non-contractible separat-
ing cycle. This was a corollary of their proven theorem that every 4-representative

embedding on the double torus contains a Non-contractible separating cycle.

Zha X in [15] conjectured more generally that every 3-representative embedding
in a suitable surface, (orientable or non-orientable) has an NSC. Ellingman in [5]
argued that representativity condition would be best possible here as some authors

have given examples of embeddings with representativity 2 and no NSC.

Robertson N. & Thomas R in [14], proved that every 3-representative embedding
in the Klein bottle has an NSC. Vitray R. P in [3], further proved that every 11-
representative embedding in a suitable surface has an NSC. Zha in [13] reduced
the representativity condition to 6-representative for orientable surfaces and 5-
representative for non orientable ones. Their orientable result originally required
a 7-representative embedding, but it was improved using a suggestion of Vitray R.
P, and the result for 6-representative orientable embeddings also appear in Brunet,

see [3] and [1].

Still on existence of NSCs in graph embeddings, Mohar. B in [9], proposed that if G

is a 3-connected graph embedded with face width at least 3, then all X-facial walks

16



are induced NSCs. Brunet R. proved that a graph embedding of representativity
w in a suitable orientable surface contains [“Z?] disjoint and pairwise homotopic
NSCs. Mohar B. & Thomassen C in [11], conjectured that given a triangulation of a
surface of genus g > 2 and a number h, 1 < h < g — 1 there must be an NSC I" such
that the two surfaces separated by I" have genus h and g — h respectively. Mohar B.
conjectured that the same result holds for any 3-representative embedding, see [1]

and [11].

Vitray R. P in [3], conjectured that an embedded graph in an orientable surface with
face-width at least 3 will contain a non-trivial surface-separating cycle. From this
conjecture it can be easily seen that a cycle C' in an embedded graph with facewidth

at least 3 is separating if C' may be spanned by a collection of facial cycles.

Ellingman N. & Zha X in [5], tackled the simplest suitable surface, the double torus.
They proved that every 4-representative graph embedding in the double torus has
an NSC which separates the surface into 2 connected components. This improved
on the best previous condition (p > 6) but does not achieve the goal of Zha’s con-

jecture (p > 3).

In this work, we consider exploring existence of non-contractible separating cycles
in critical embeddings on the triple torus. We wish to prove existence of NSCs in
4-representative graphs embedded on the triple torus and we consider the triple

torus to be the one in figure 2.1.

17
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Figure 2.1: The triple torus.
Source: Radicliffe.
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CHAPTER 3

ESSENTIAL ARCS, PUNCTURED TORI AND TRIPLE TORUS

This chapter presents some technical definitions on essential arcs, punctured tori
and triple torus. We also state and prove some lemmas which will be used in the

proof of our main theorem.

3.1 Essential arcs and punctured tori

The following lemma shows how two disjoint Non-Contractible circles on a torus

splits the surface into 2 cylinders, we refer the reader to [5].
Lemma 3.1.1

(i) Two disjoint non-contractible circles in the torus are homotopic (up to orien-

tation) and together they separate the torus into two cylinders.

(ii) Two non-contractible circles on the torus are disjoint (under homotopy) if

and only if they are homotopic (up to orientation).

Figure 3.1 summarises the description above where one non-contractible separat-

ing cycle on a torus cuts the torus into a cylinder.

19



When two disjoint non-contractible separating cycles are used, the torus will be

separated into two cylinders.

™~
J f)

Figure 3.1: Formation of a cylinder from a torus.
Source: Radicliffe.

Suppose Y, is a surface with one boundary circle I". Let ¥ be a surface without
boundary obtained by pasting a disk D along I'. Suppose P is an arc in ¥, joining
two distinct points of " in 3y with P° N T" = (). The endpoints of P divide T' into
two subarcs I'; and I's. In that case, we have two circles P U I'y, P U Iy which
are homotopic. If these two circles are non-contractible then P will be called an
essential arc, we refer to [5]. Now let ¥y = T, and X = T be tori. Then T is a
punctured torus. A punctured torus with one boundary circle I" is denoted 7, and

a punctured torus with two boundary circles T',, ', is denoted T};.

3.2 The Cylinder-Strip partitions

Let P and P’ be parallel disjoint essential arcs on a punctured torus. Together they
separate the punctured torus into a cylinder and a strip. A cylinder in that case has
two boundary circles and a strip has one. This partition is denoted CS(P, P’), See
[5].
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Let 32 be a surface with two boundary circles ', and T', and %2 be a surface without
boundary obtained by pasting disks D, and D, along I", and T, respectively. Sup-
pose P, is an arc that joins two distinct points of ', in 32 with P°NT", = . Similarly,
suppose P, is an arc that joins two distinct points of T', in 32 with P2 N T, = (). The
endpoints of P, divide ', into two subarcs I'! and I'?, and the two circles P, UT?,
P, UT? are homotopic in 2. Similarly, the endpoints of P, divide I', into subarcs
'}, T'? and the two circles P, UT}, B, UT? are homotopic in X2, If both these circles

are Non-contractible then both P, and P, will be called essential arcs.

Now assume that ¥2 = T2 is a punctured torus with two boundary circles and
¥ = T a torus which is not punctured. Suppose that P, and P’ are disjoint essential
arcs (so that their four endpoints are all disjoint). We say P, and P! are parallel
if the end points of P, are not separated on I', by the end points of P.. Similarly,
we say P, and P, are parallel if the endpoints of P, are not separated on I', by the

endpoints of P,.

In the above case we may label the four endpoints of the pairs of the arcs in order
along I', and T, respectively as z,, y,, =, y,, with P, from z, to y,, P’ from 2/, to
y,. Similarly the four endpoints in order along I', can be labeled as wy, s, 2}, y;,
with P, from z; to y,, P, from z} to y;. By Lemma 3.1.1 (i), the disjoint homotopic
circles P, U z,I',y, and P, U 2/ T,y separates T into disjoint cylinders C,, C! and
the homotopic circles PU z,[',y, and P/ U x;T'y, separate T into disjoint cylinders
Cy, C}. Let C! be the cylinder containing D?. Then C! is further separated by

Yol 'zl Uy I'ax, into D? and a disk S, bounded by P, U y,I'sz), U P, Uy I'yx,. S, is
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called a strip with ends y,[',2), and y/I',z,. Thus, I', U P, U P! separates the torus
T into C,, S, and D,, and P U P’ separates the torus 7, = 7\ D¢ into C, and S,,.
C., S, is called the cylinder-strip partition of 7, induced by P, and P, and is denoted

CS(P,, P)).

Now let Cj be the cylinder containing D;. Then Cj is further separated by y,[',x; U
yI'pxp, into Dy and a disk S, bounded by P, Uy,'yx, U Py Uy, lyay,. Sy is called a strip
with ends y,['yz; and y,I'ya,. Thus, I'y U P, U P/ separates the torus 7" into C}, S, and
Dy, and P, U P} separates the torus 7, = 7'\ Dy into C}, and S,. C,, Sy is called the
cylinder-strip partition of 7}, induced by P, and P, and is denoted by C'S(P, P}).
Figure 3.2 gives an illustration of the description above.

—

Pl strip P

e

Figure 3.2: Construction of cylinder and strip.

The following lemma shows how 3 essential arcs, two of them being parallel, can

be properly placed on the cylinder-strip partition of a punctured torus.

Lemma 3.2.1: The Cylinder-Strip Lemma. Given a punctured torus 77, with
two boundary circles I', and I'y, let P,, P, and P,, P} be a pair of parallel disjoint
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essential arcs. Let P! be an essential arc disjoint from P, and P, and P/ be an

essential arc disjoint from P, and P). Then,

(i) Both ends of P’ must lie in the cylinder, C, or both ends must lie in the strip, S,

of C,S,(P,, P!).

(ii) Both ends of P must lie in the cylinder, Cj, or both ends must lie in the strip, S,

Of CbSb(Pb, Pl;)

(iii) If both ends of P! lie in the strip S,, then they lie at opposite ends.

(iv) If both ends of P’ lie in the strip S,, then they lie at opposite ends.

Figure 3.3 shows cases where the cylinder-strip lemma is violated, we refer to [5].

r r
P P
PFF

Q b

Figure 3.3: (a) violates (i) of cylinder strip lemma, (b) violates (iii) of cylinder strip
lemma.

In dealing with essential arcs in a given punctured torus 7y, with boundary I, Elling-
man N. & Zha X represented I" as a circle and essential arcs as chords of the circle,

see [5]. Suppose I' is a single boundary circle of compact surface ¥,. Let D be
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a closed disk in ¥, and suppose I' " D = I' N 0D consists of a finite number of
components. We say that I and D intersect essentially if every arc in D joining two

distinct components of I' N D is essential.

The following lemma shows how many possible components of I' N D can occur in

a punctured torus.

Lemma 3.2.2: Suppose I', and T, are boundary circles of a punctured torus 77,
and I', and I', intersect disks D, and D, essentially, respectively. Let L, = 0D, and
Ly, = 0D, both oriented clockwise. Let '}, T2, ... T'* be the components of I', N D, =
[, N L, and T}, T2, ..., T be the components of I', N D, = T, N L, both oriented
clockwise along their respective boundaries where I, = 2 L,y’ and T = 27 Ly’ for

each 7 and j respectively.
(i) k<4

(i) Ifk = 2then (y!, 2z}, y2, 22) occur in that clockwise order along T, and (v}, x}, y2, z2)

occur in that clockwise order along I’

(iii) If & = 3 then (y}, zl,y? 22, y3, 22) occur in that clockwise order along I', and

(v}, xi, y2, o2, y3, x3) occur in that clockwise order along T,

(iv) If k =4 then (y}, z},y2, 22, y3, 3, y2, x3) occur in that clockwise order along I,

and
(yt, oty 2, o2, y3, o3, vy, o) occur in that clockwise order along T,

Proof. By expanding D, and or D, slightly if necessary, we may assume that z?, # 3

24



for all i and similarly that mi + yi for all j. If we add a disk D, along I',, L, and T,
are both contractible and have natural clockwise orientations, which must oppose
each other where they meet. Thus vy’ is followed on I', by z! and z! must be
followed by some y’. On the other hand, if we add a disk D, along 'y, L, and T, are
both contractible and have natural clockwise orientations, which must oppose each
other where they meet. Thus ] is followed on T, by 2] and - must be followed by

some ;.

We first prove (ii), (iii) and (iv) and then prove (i)

(ii)) When k = 2 the given orders are the only possible ones.

(iii) Suppose k = 3. There are only two possible clockwise orders along I',. If
the order is (v}, z}, y3, 23 42, 22) then the essential arc y3L,z! has both ends at the
same end of the strip of C, S, (y! L,22, y>L,x?) contradicting (iii) of the cylinder-strip
lemma and if the order is (v}, zi, y3, =3, y2, z2) then the essential arc y; L,x} has both
ends at the same end of the strip of C,S,(y} Lyz7, y7 Lyx;) contradicting (iv) of the
cylinder-strip lemma.

(iii) By shifting D, slightly we may apply (iii) separately to both collections T'}, T2,
I and T}, T3, I and get the required order. Also by By shifting D, slightly we
may apply (iii) separately to both collections T}, I'?, I'; and '}, I'}, I'; and get the
required order.

(i) If k£ > 5, then by shifting the disk D, slightly we may assume that k£ = 5. By sim-
ilar reasoning to (iv) the clockwise order must be (y}, zl y2 22 43, 23 yd x2 42 o).

Now the essential arc y!L,x> has one end in the cylinder and the other end in the
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strip of C,S.(y2 Loz, y?L,x3) contradicting (i) of the cylinder-strip lemma. On the
other hand, by shifting the disk D, slightly we may assume that £ = 5. By simi-
lar reasoning to (iv) the clockwise order must be (v}, x}, 2, 2, vi, 23, yi, 2}, vp, x3).
Now the essential arc y} L,z; has one end in the cylinder and the other end in the

strip of CySy (v} Lyz}, yi Lyxy) contradicting (ii) of the cylinder-strip lemma.

3.3 The double and triple tori

Ellingman N. & Zha X, see [5], considered a double torus S,. Suppose we have an
oriented non contractible separating circle I' of the torus S,. It separates S, into
two punctured tori Ay, By which are both closed and include I". When convinient,
Ay is completed with disc A* to a torus A and By with a disk B* to a torus B. If both
A and B inherit the orientation of Sy, I will be clockwise in A and anticlockwise in
B. In other words, I" goes clockwise around A* so A* is to the right of I' in A, and
Ay is to the left of ' in both A and S;. Similarly B, is to the right of T, see figure

3.4.

Now we consider a triple torus S;. Suppose we have 2 oriented noncontractible
separating circles I',, I', of the triple torus. Together they separate the triple torus
into three punctured tori, Ag, By, Cy. Ay contains I',, By contains both I', and T’
and Cj contains I', meaning that both Ay, By and Cj are closed. When convinient,
we will complete A, with disk A* to torus A, By with disks B} and B} to torus B

and C, with disk C* to torus C.
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Figure 3.4: NSC I" on a double torus

Ap and Cj are punctured tori with one boundary circle each, I', and I';, respectively.
By is a punctured torus with two boundary circles I', and I',. We assume that T,
goes clockwise around A*. So A* is to the right of I', in A and A, is to the left of T,
in both A and S;. I', goes clockwise around C* in C' so C* is to the right of I, in C
and Cj to the left of ', in both C' and S3. Since I', goes clockwise around A* in A,
it goes anticlockwise in B, meaning B is to the left of I, in that case. Similarly B,

is to the right of I';, see figure 3.5

We now discuss some of the ways I', and I', can pass through given closed disks D,

and D,. Let L, = 0D, and L, = 0D,. Suppose I',N D, has finitely many components
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Figure 3.5: NSCs I', and I';, on a triple torus

including but not limited to '}, T2, T'3, T4 and I', N D, has finitely many components

I}, T2 T3, T} with;

i.

ii.

Each I N L, has at most 2 components, 1 < i < 4 and Fi N Ly has at most 2

components 1 < j <4

There is an arc P, in D, with ends on L, and Py C D¢ such that P, NI, =
X1, %9, 3, vy Where xy, o, x3, x4 are in that order along P;. Each x; belongs to

I and I'2 and I'? cross (not just intersect) P, at z, and x5 respectively.

Similarly there is an arc P, in D, with ends on L, and Py C D, such that

P, N Ty = y1,92,y3, ya Where y1, 4o, y3, y4 are in that order along P,. Each y;
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belongs to I} and ' and I'} cross P, at y, and y3 respectively.

Assume that xz;Pizo C Ay and y; Poy» C By. For each i, let ia denote the first
component of I, N L, following T, along T, and b the last. And for each j let jd

denote the first component of T} N L, following I} along T, and j f the last.

By the fact that I, is separating and using orientations of A, and B, the components
la, 2b, 3a, 4b, 4a, 3b, 2a, 1b occur in that clockwise order along L, (so 2a # 2b,3a #
3b, but possibly 1a = 1b or 4a = 4b). Similarly by the fact that I, is separating and
using the orientations of B, and C, the components 1d, 2¢, 3d, 4e, 4d, 3e, 2d, le
occur in that clockwise order along L, (so 2e # 2d, 3d # 3e but possibly 1d = 1le, or

4e = 4d)

There are six possible cyclic orders in which components '}, T2, T3, T'? can occur

along T', and six possible cyclic orders in which components I'}, ', '}, I'} can occur
along I',. In each case they occur in pairs which are equivalent up to reversal of T,
and Ty, respectively. If we know that I, intersects the (closures of the) components
of D,\I', essentially, then for some of these orders we can place restrictions on
where additional components of I', N D, can be. Similarly if we know that T,
intersects the (closures of the) components of D,\I', essentially, then for some of
these orders we can place restrictions on where additional components of I', N D,

can be.
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CHAPTER 4

NON-CONTRACTIBLE SEPARATING CYCLES AND CRITICAL

EMBEDDINGS

This chapter focuses on how new NSCs can be constructed from old ones. We also
discuss a method called augmentation, which raises representativity of embeddings
from 4 to 6 in this chapter and then we define critical embeddings. That will take

us to the proof of our main theorem in the same chapter.

The following lemma shows possible orders of arrangements of segments of ',N D,

and I', N D, on a triple torus.

Lemma 4.1: Suppose I', and I, are two non-contractible separating circles of S
with disks D, and D, and components I}, T2, T3, T of T', N D, and components
It, T2, T3, Ty of Ty N D, as described above. Suppose further that I', intersects the
closure of every component of D,\I', essentially (in Ay or B, as appropriate) and
that I, intersects the closure of every component of D,\I', essentially (in B, or Cy

as appropriate).
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1. If the components occur along I, in the order (1432) then I', N (2aL,1b)° =
I, N (4aL,3b)° = () and if the components occur along I', in the order (1432)

then T'y N (2dLyle)® = T, N (4dLy3e)° = 0

2. If the components occur along I, in the order (1342) then I', N (2aL,1b)° =
I, N (3aL,4b)° = () and if the components occur along I'y, in the order (1342)

then T', N (2dLyle)° = Ty N (3dLyde)’ = 0

Proof: Suppose in Case 1 that I',N(2aL,1b)° # (. Let I'> (or for short 5) be the com-
ponent of I'N(2aL,1b)° closest to 1b on L,. By lemma 3.2.2 (iii), 5 C (2b',1a)°. But
then 51,10 violates C,S,(1aL,2b,3aL,4b)(i) (i,e violates Lemma 3.2.1 (i)). Here it
is necessary if I'! = la = 1b is a single point. Thus, ', N (2aL,10)° = (). Simi-
larly suppose that T', N (2dL,1e)® # (). Let I’} be the component of I', N (2dL;1e)°
closest to 1le on L;. By lemma 3.2.2 (iii), I'; C (2el',1d)°. But then 5L1e vio-
lates Cy,Sy(1dLy2e, 3dLyde)(ii)(i.e violates Lemma 3.2.1 (ii)). Here it is necessary if

[} = 1d = le is a single point. Thus ', N (2dLyle)° = .

Similarly suppose in Case 2 that I', N (2aL,1b) # (. Let I'> be the component of
'y N (2aL,1b)° closest to 1b on L,. By lemma 3.2.2 (iii), 5 C (2bI',1a)°. But then
5L,1b violates C,S,(1aL,2b,4aL,3b)(i)(i.e violates Lemma 3.2.1 (i)). (Note: We
assume that essential arcs can be shifted slightly if necessary to apply the Cylinder-
Strip Lemma). Here it is necessary if I'' = 1la = 1b is a single point. Thus, T';, N
(2aL,1b)° = (). On the other hand suppose that I', N (2dL,le)° # 0. Let I'} be

the component of T', N (2dL1e)° closest to 1e on L,. By lemma 3.2.2 (iii), I’} C

31



(2el'y1d)°. But then 5L1e violates Cy,S,(1dLy2e, 4dLy3e)(ii)(i.e violates Lemma 3.2.1
(ii)). Here it is necessary if I'; = 1d = le is a single point. Thus ', N (2dL,1e)° = 0.

The rest of the proof is similar.

4.1 Construction of Non-Contractible Separating Cir-

cles

Next we discuss a method of constructing new noncontractible separating circles
from old ones on general surfaces in theorem 4.1.1 and Corollary 4.1.2 will show

how this applies to a triple torus.

Theorem 4.1.1: Let 3 be a surface with two oriented noncontractible separating
circles I', and I', separating the surface into 3 closed components A,, By and Cj.
Suppose there are sections '}, T2, '3, T'? of T', in that order along I',, and sections
I}, T2, T3, T} of T in that order along I',. Suppose further that there are arcs Py,

P34 in Ay, Q23, Q41 in By, also, Q12, Q34 in By and Ry3, Ry in Gy, such that;
() T}, 12,13, T are disjoint, so are I'}, T'z, T}, T'}
(i) Py, P3y, Q%4, @3, are disjoint from I', and Q%,, %4, RSs, R}, are disjoint from
Iy

(iii) P2 has ends aq, ao; P34 has ends as, as; Q23 has ends by, bs; Q41 has ends by, by
where a;, b; are two ends of each I", (not necessarily in order along TI',); Q1
has ends ¢;, ¢; Q34 has ends c3, ¢4; Ro3 has ends dy, d; and Ry, has ends dy,

d,; where ¢;, b; are two ends of each I'} (not necessarily in order along T;).
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(iv) P12 U P34 separates A, into a component A; with boundary P, U asl'yas U
P3y Uayl' a1 (one circle) and a component A, with boundary (a,1',a2 U Pyo) U
(asTyasU Pyy) (two circles). Q23U Q4 similarly separates By into a component
B; with boundary Q23 UbsI',bys U Q4 UbiI',by (0ne circle) and a component Bs
with boundary (bsI',b3 U Qa3) U (041,01 U Q41) (two circles). In the same way;,
Q12U Q34 separates By into a component Bs with boundary Q1o Ucolyes UQ34U
c4I'pcy (one circle) and a component B, with boundary (¢, I'yco UQ12U (31 e U
()s34) (two circles), while Ry3 U Ry; similarly separates Cy into a component C
with boundary Ra3 U d3'ydy U Ry U diyds (one circle) and a component Cs

with boundary (daI'yds U Ra3) U (ds'ydy U Ryy) (two circles). Then;

F,:FCILUPHUFZUQQ?,UF?LUP34UF§UQ41 and

I =T, UQaUT2U Ry UTP U Q34 UTE U Ry are also Non-contractible
separating circles in X2, separating A, U B, from A, U B, and B; U C, from

B, U C] respectively.

Proof. We observe from the conditions of the theorem that I separates A; U B, from
A U By and that I separates B; U Cs from B, U C. It is enough to show that both
I and I'” are Non-contractible or equivalently that none of A; U B, Ay U By,B3UC,

and B, U C is homeomorphic to a disk.

(i) Since A; has one boundary circle, it is homeomorphic to a disk with handles
and or crosscaps attached. Since B; has two boundary circles, it is homeo-

morphic to a cylinder with handles and or crosscaps attached. If A, is just a
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(ii)

(iii)

disk and B, just a cylinder, the way they are attached along the segments of
', between I'2 and I'? and between I'} and I'} means that the result would
be homeomorphic to a punctured torus. More generally, the result is home-
omorhic to a punctured torus with handles and or crosscaps added, which is

not a disk. Therefore A; U B is not a disk.

Since B; has one boundary circle, it is homeomorphic to a disk with handles
and or crosscaps attached. Since A, has two boundary circles, it is homeo-
morphic to a cylinder with handles and or crosscaps attached. If B is just a
disk and A, just a cylinder, the way they are attached along the segments of
', between I'2 and I'? and between I' and I'! means that the result would be
homeomorphic to a punctured torus. More generally, the result is homeomor-
phic to a punctured torus with handles and or crosscaps added, which is not

a disk. Therefore A, U B; is not a disk.

Since B3 has one boundary circle, it is homeomorphic to a disk with handles
and or crosscaps attached. Since C; has two boundary circles, it is homeo-
morphic to a cylinder with handles and or crosscaps attached. If B3 is just a
disk and C, just a cylinder, the way they are attached along the segments of
I', between I'; and I'} and between I'; and I'} means that the result would be
homeomorphic to a punctured torus. More generally, the result is homeomor-
phic to a punctured torus with handles and or crosscaps added, which is not

a disk. Therefore Bs U (5 is not a disk.
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(iv) Since C; has one boundary circle, it is homeomorphic to a disk with handles
and or crosscaps attached. Since B4 has two boundary circles, it is homeo-
morphic to a cylinder with handles and or crosscaps attached. If C; is just a
disk and Bj just a cylinder, the way they are attached along the segments of
', between I'; and I'} and between T’} and I'} means that the result would
be homeomorphic to a punctured torus. More generally, the result is home-
omorhic to a punctured torus with handles and or crosscaps added, which is

not a disk. Therefore B, U (] is not a disk

Since (i) and (ii) proves that components A; U By and A, U B; are not disks,

then
["=TLUP,UT2UQuUIBUP,UTIUQ,

is Non-contractible. Similarly, since (iii) and (iv) proves that components B3 U C5

and B4 U C,; are not disks, then
[ =T} UQ2UT? U Ry3 UT3 U Q34 UTE U Ry, is also Non-contractible.

We now apply this to the triple torus, with weaker versions of conditions (ii) and

(iv), and stating condition (iv) in a way that is specific to the triple torus.

Corollary 4.1.2. Suppose I', and I', are two Non-contractible separating circles in
the triple torus Ss, separating Sz into three (closed) punctured tori Ay, By and Cj.
Suppose there are sections I'}, T2, '3, I'? of ', in that order along I',, and sections

I}, T2, T3, T} of T, in that order along Ty, arcs Pjo, Psy in Ag; Qa3, Q41 in By 5 Q12,
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Q34 in BO and Rgg, R4 in CO such that;
() T, 12,13 T4 are disjoint, so are I'}, T'Z, T3, T’}

(i) Pp, P3,, Q%, Q% are disjoint from T', and Q5,, Q3,, Rs;, R, are disjoint from

I

(iii) Py, has ends a4, as; P34 has ends as, ay; Q23 has ends by, b3 and (Q4; has ends
by, by where a;, b; are two ends of each I'!, (not necessarily in order along T',)
and ()1, has ends c;, ¢y, Q34 has ends c¢s3, ¢4, Ro3 has ends ds, d3 and R4 has
ends dy, d; where ¢;, b; are two ends of each Fg (not necessarily in order along

I'y).

(iv) Py9, P34 are homotopic with endpoints fixed in Ag to a pair of parallel essential
arcs and ()23, Q41 are homotopic with endpoints fixed in B, to a pair of parallel
essential arcs. Similarly 15, ()34 are homotopic with endpoints fixed in By to
a pair of parallel essential arcs and Rs3, R4 are homotopic with endpoints

fixed in () to a pair of parallel essential arcs. Then;
P/:F(];LUP12UF§UQ23UFZUP34UF3UQ41 and

[ = TiUQ12UT2U Ry UT3UQ3, U U Ry, are also Non-contractible separating

circles in Ss.

Proof: Conditions (ii) and (iv) mean that by shifting I, slightly, we can make P,
P34 and @Q)s3, Q41 into pairs of parallel essential arcs. Similarly, by shifting I', slightly

we can make ()12, (34 and Ro3, R4 into pairs of parallel essential arcs. Then each of

36



the (slightly shifted) punctured tori is separated into a cylinder and a strip in each

case. Now applying Theorem 4.1.1 completes the proof.

Sets of arcs Pia, Py, Q23, Q41 and Q12, Q34, Ra3, R4 satisfying Corollary 4.1.2 are
called orthogonal arrangements of parallel arcs, or OP for short. They are are re-
ferred to as OP(Pys, Pay; Qo3, Q41) and OP(Q12, Qs4; Ros, R41). The arcs P, Pay,
(23, Q41 are not required to have interiors disjoint from I',, just from sections Fé:
2, I3, I't. Similarly, the arcs Q12, Q34, Ro3, R4 are not required to have interiors
disjoint from I',, but just from sections I't, I'Z, '}, I'f. The most common case of
this is illustrated in figure 4.1. When forming an OP, the two hatched essential
arcs joined by a hatched segment of I' may be considered equivalent to the sin-
gle dashed essential arc, as long as the hatched segment of I', does not intersect

Il 2 s,

Figure 4.1: Equivalent to an essential arc, see [5].

4.2 Critical embeddings

In proving the existence of Non-contractible separating cycles (NSCs), Ellingman
used an approach of examining embeddings which are very close to having an
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NSC.

The following lemma justifies existence of NSCs in critical embeddings with critical

edges.

Lemma 4.2.1 : Let X be a suitable surface (one with genus at least 2), and k£ > 3
(the representativity of an embedding on such a surface). Suppose there is a k-
representative embedding in X that does not have an NSC. Then there exists a
k-representative embedding ¥ of a simple 2-connected graph in ¥ that does not
have an NSC, with a face f containing non-adjacent vertices z, y so that when the
edge wy is inserted across the face f, ¥ = ¥ U zy has an NSC. We call ¥ a critical

embedding with critical edge xy, see [5].

Proof: Let ¥, be a k-representative embedding of a graph G, in ¥ with no NSC.
Since k£ > 3 and since multiple edges bounding a disk can be reduced to a single
edge without affecting existence of an NSC, we may assume that G, is simple.
Moreover, by reducing it to essential 2-component, we may assume that G is 2-

connected.

Ellingman N. & Zha X, see[5], defined an augmentation of an embedding to be

either;

(i) The addition of an edge across a face between two nonadjacent vertices on

that face or,

(ii) If every face is a triangle as in triangulation (bounded by a 3-cycle), then in
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some face (uvw) subdivide one edge uv with a new vertex x and then add the

edge ux

Neither (i) nor (ii) decreases the representativity. In a sequence of augmentations,

any augmentation following one of type (ii) must be of type (i).

If we apply a sequence of augmentations to ¥, each embedding is k-representative
with a graph that is simple and 2-connected. Moreover, by applying a sequence
of augmentations to ¥, we can increase its representativity arbitrarily. First, we
complete ¥, to a triangulation using type (i) augmentations. It is well known that
in a triangulation, representativity equals the length of a shortest noncontractible
cycle. Given an edge e = vw on a shortest noncontractible cycle, belonging to
two triangles (vvw) and (twv), we can apply four augmentations of type (ii), (i),
(ii), (i) with the effect of deleting vw, adding two new vertices x;, x5, and adding
paths vz w, vrow, urixst. This destroys all shortest noncontractible cycles through
e without creating any new shortest noncontractible cycles. After destroying all
shortest noncontractible cycles in this way, the representativity must increase by at
least one, then we can repeat the process. The essence of repeating the process is
to raise representativity to 6 at which point Zha & Zhao proved that an NSC exists,

see [13].

Therefore, it is possible to apply a sequence of augmentations to ¥, to raise the rep-
resentativity to at least 6, at which point an NSC exist. Let ¥ be an embedding in

the sequence before the first augmentation that creates an NSC. Type (ii) augmen-
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tations cannot create an NSC if one does not already exist. So the augmentations is

of type (i) and the result follows.

4.3 Main theorem

In this section, it is shown that every embedding on the triple torus with repre-
sentativity at least 4 contains two NSCs. We begin with a standard result on 4-

representative graphs.

Definition 4.3.1: Equivalence of embeddings: Two embeddings ¥, : G — X
and ¥, : G — ¥ are equivalent, denoted by ¥, = V¥, if there exists a graph
automorphism « : G — G and an orientation preserving surface homeomorphism
n : ¥ — ¥ for which the map compositions ¥V,on: G — Yand ao V¥, : G — X

are identical, see [10].

The following lemma shows how two, 4-representative graph embeddings on the

triple torus are equivalent.

Lemma 4.3.2: Let ¥, : G — S; and V¥, : G — S3 be two embeddings of a graph
G into the triple torus S;. Suppose there exists an automorphism o : G — G
between G and itself. Then the embeddings ¥, : G — S; and ¥, : G — S5 are

equivalent.

Proof: First we show that there is an orientation preserving surface homeomor-
phism 7 : S3 — S5. [Bernadi. O (2011)] argued that a map is a connected graph

embedded on a surface, considered up to orientation preserving homeomorphism.
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This is obvious since a triple torus is always homeomorphic to itself. For easy iden-
tification of the preservation of the orientation, we consider the case where the

homeomorphism 7 is an identity map.

Finally we show that the map compositions ¥, o0n: G — Sz3and ao ¥, : G — S;
are identical. Let e be an arc with end points v, w on Ss, then 7(e) = e since 7 is
identity map. Since ¥, is an embedding, V,((u,v)) = e. Similarly, let e be an edge
of graph G with end points u, v, i.e, edge (u,v). Then since ¥, is an embedding,
U, ((u,v)) = e where e is an arc on Ss;. Applying 7 on e we have 7(e) = e since e is

an identity map. Hence, the two embeddings ¥, and V¥, are equivalent.

The lemma below shows the existence of a disk D which contains the union of f
and all faces that share at least one vertex with f, given that f is the face of an
embedding which has representativity at least 3. The subsequent lemma shows

how this applies to 4-representative embeddings on the triple torus.

Lemma 4.3.3: Let f be a face of an embedding ¥ : G — ¥, where ¥ is not a 2-
sphere. Let k& be an integer such that p(U, f) > 2k + 1 and let B,(f) be the union of
f and all faces that share at least one vertex with f. Then there is a disk Dy.(f) C X

which contains By (f) such that 0Dy (f) C 0Bx(f), see [14].

Proof: Any contractible simple closed curve v € ¥ bounds a unique disc since X is
not a 2-sphere. Denote this disc by int(y). Clearly, any disc containing By (f) must

contain the disk int(~) for any simple closed curve ~ in By(f). Let

Dy = By(f)U{int(y) | v is a simple closed curve in By (f)}.
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Each closed curve v in D;, is homotopic to some closed curve contained in By(f)
since any part of v in int(-y) can be moved by homotopy to the boundary of int(y),
which is contained in By (f). Dy is simply connected and it is also connected by
construction and 0Dy C 0Bx(f). Since the only simply connected compact surfaces
are the 2-sphere and the closed disk, it suffices to show that D, is a 2-manifold
with boundary. By construction it follows that D, is closed. Moreover D, is a
union of closed faces. Therefore, a singularity can only appear at the vertex of the
embedded graph. But by the following reason a true singularity is excluded. If ¢
and h are faces in By (f) meeting at a vertex z, let v be a closed curve starting at
a point in int(f) leading to g going through z to h, and returning to f, such that
| z€ S' | v(2) € ¥(G) |< 2k + 1. Since p(f) > 2k + 1, v bounds a disk in Dy.
Consequently all the faces at = which lie between g and / (one or the other side)

also lie in D;,.

Lemma 4.3.4: Let f, and f, be faces of two 4-representative embeddings ¥, and
U, which are equivalent on the triple torus, and let F, be the union of f, and all
faces that share at least one vertex with f,. Similarly let F; be the union of f, and

all faces that share at least one vertex with fj.

(i) The face f, is a disk D} with boundary cycle L}, and there is a disk D? > D!
with boundary cycle L2, such that F C D? and L? = 9D? C OF,. Similarly,
the face f, is a disk D} with boundary cycle L;, and there is a disk D} D D;}

with boundary cycle L7, such that ' C D? and L = 9D} C OF,
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(ii) Any path P, in D? with both ends on L? must be a segment of L? or must
contain a vertex of L! and any path P, in D} with both ends on L? must be a

segment of L? or must contain a vertex of L}
Proof.
i (i) is a special case of Lemma 4.3.3.

i If (ii) fails, there would be a path P, in D? internally disjoint from L? joining two
vertices of L2 and not intersecting L.. Labeling the ends a, b of P, appropriately,
P,UbL?a would separate (aL2b)° from L.. But this contradicts the fact that since
L? C JF,, every point of L? has an arc joining it to L} that does not intersect
the graph except at its endpoints. Similarly, there would be a path P, in D}
internally disjoint from L? joining two vertices of L? and not intersecting ;.
Labeling the ends d, e of P, appropriately, P, U dL?e would separate (dLZe)°
from L;. But this contradicts the fact that since L; C 0F,, every point of L} has

an arc joining it to L; that does not intersect the graph except at its endpoints.
We now present the main theorem.

Theorem 4.3.5: Every 4-representative embedding on the triple torus contains two
non-contractible separating cycles which splits the triple torus into 3 connected

components.

Proof: Suppose the theorem is false. By Lemma 4.2.1, there are critical 4-representative

embeddings ¥, and ¥, (of simple 2-connected graphs) with no NSC, while U} =
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¥, Uvw and ¥ = ¥}, U zy have NSCs. Suppose that vw is added across the face f,
and zy across the face f,. Let D}, D2, L}, [? and let D}, D?, L}, L; be as provided

by Lemma 1.8 for both f, and f, and let L, = L} U L? and L, = L} U L}.

Every NSC in ¥ must contain the edge vw and every NSC in ;" must contain the
edge ry. Of all NSCs in ¥/, let I', be the one that minimises || T', N D? || (the
number of components in T', N D?) and subject to this also minimises || T, N D} ||.
Similarly let ', be the one that minimises || I, N D? || (the number of components

in T', N D?) and subject to this also minimises || T', N D} ||

Then each component of I', N D? contains at most one component of I', N D} (and
using lemma 4.1 (ii)), at most 2 components of I', N Lg. By the same argument,
each component of I', N D} contains at most one component of ', N D} (and using

lemma 4.1 (ii)), at most 2 components of I', N L. We often abbreviate I' to i.

/
a’

(In later parts of the proof we also use components of I/, abbreviated i/, where
i =1,2,... and components of I';, abbreviated j’, where j = 1,2,...). We represent

subsegments of component i as ij where j is a letter, e.g 3a is a subsegment of

3 =%,

Since ¥, and V¥, are equivalent by lemma 4.3.2, all operations on I', applies simi-
larly on I'y. We now focus on I', and conclude to operations of I';, by equivalence of

the embeddings.

The minimality assumption further guarantees that any arc in D? that joins different

components I, 'V of I'N D? and is otherwise disjoint from T, is essential. If it were
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not essential then we could replace one of the segments iI',j or jI',i with a section
of L2, reducing || ', N D? ||. This is true even if the segment of L2 we wish to use,
intersects other components of I'2 N D?, because those other components must also

be part of the segment of I', we are replacing.

Let I} be the component of I', N D? that contains vw. Then I') N L, has four
components which we name 3a, 3b, 3¢, 3d in order along I, with 3a,3d C L? and
3b,3c C L. We may assume that v € 3b and w € 3c. For ease of description, we
assume that D? is drawn as a circular disk and I'} passes downwards through D?,
with 3a containing its top point and 3d its bottom point. Other than I'}, no other

component of I', N D? contains more than one component of I', N L.

In fact, any other component I'; of I', N D? is one of two types. If || [/ N D! ||=1, 4 is
a segment of L2. Otherwise, || I'. N L, ||= 3 and i includes two segments ia, ic of L?
and one segment ib of L} with ia, ib, ic in that order along T',. Since ¥, is critical, T,
intersects both (3bL!3c)° and (3¢L!3b)°, otherwise we could reroute T', to avoid (the
interior of) 3b',3c = vw. Moreover, each component of I', N D? which intersects

(3cLl3b)° cannot be rerouted via 3dL?3a or we could reduce || T, N D! |.

Let T2 denote any such component, with 2a,2c C L? and 20 C L!. Note that
2 passes upwards through D? so that the half of f, to the right of T'? is also
to the right of T'2. Since I'? cannot be rerouted there is at least one component
of I, N D? that intersects (2aL?2c)°. Let '} denote any such component, which

must be a segment of L? and passes downwards through D?. In similar way, we
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can find I"! passing upwards through D?, intersecting (3aLZ?2c¢)° at 4a and 4c and
intersecting (3bL}3c)° at 4b. Then we must also have I'> = 5 passing downwards
through D? and contained in (4cL24a)°. In general, it is not known whether a given
component of I', N L, is trivial (single vertex) or not. The above description can be

well represented by figure 4.2.

3d

Figure 4.2: Segments of I" in D,, see [5].

Let A, denote the part of S5 to the left of I',, and B, the part to the right; Also B
is the part of S3 to the left of I', and C to the right. Ay, By, and C,, are punctured
tori. For i > 1, let A; denote the unique component of Ay N D? to which I belongs;
define B; similarly. (If ') C L2, one of A; or B; will be just I'? itself). We know that

Al = Ag, BQ = Bg, Ag = A4 and B4 = B5.

We will frequently use the orthogonal arrangements of parallel paths to construct a

new NSC I/ in ¥;. In notation, OP(P, P’;Q,Q’), P, P' will be paths in Ay and @,
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@' those in By. There are two common ways in which this provides a contradiction.
First, I/, may avoid the edge vw, and so be an NSC for ¥,; we indicate this by
AOP(P,P';Q, Q). Second, I'', N D? may have fewer components than T, N D?; we

indicate this by COP(P, P'; Q,Q’).

Suppose P, P', Q, @' all lie in D?. When we form I", from I", we delete the interiors
of four nontrivial segments of I',, say S;, S3, S3, Sy and then add the interiors of
P, P', Q, Q. Each end of S; lies in some component of I, N D?. Suppose each
S; intersects s; components of I', N D2, then s; > 1. When we delete SY, the
number of components in D? changes by 2 — s;. When we add P°, P, Q, Q",
the number of components in D? changes by -4. Thus || I, N D? ||=| T, N D? ||

+4 — s — S9 — S3 — Sa4.

The above analysis is valid even when the interiors of P, P/, ), )" intersect com-
ponents of T', N D2. If we do not have s; = s, = s3 = s4 = 1, then we have
COP(P,P’;Q,Q"). In particular, let OOP[i](P, P’;Q,Q’) denote the situation in
which some component i of I', N D? contains an odd number of the eight endpoints
of P,P";Q,(Q)" (counted with multiplicity). Then s; > 1 for some j, so this is a

special case of COP(P, P’;Q, Q).

Now we break into cases according to the order of 1,2,3,4,5 along I',. For any

distinct components iy, is,...,i of ', D2, we say that ', has (iyis, ..., i1,) if i1, G9,...,0,

occur in that order along I',.

(A) Suppose I', has (1432). (Since we do not mention component 5, no assumption
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is made about its position). By lemma 4.1, T',N(2aL21)° = T',N(4aL?3d)° = (. Note

that by lemma 3.2.2, T', N (2¢L23a)° C (30,2)°.

For easy understanding of the subsequent arguments in the proof, figure 4.3 shows
how we construct new NSCs using corollary 4.1.2 in the first two cases here. The
solid chords are essential paths in A, the dashed chords are essential paths in B,,

and the edges of I" used by the new NSC are hatched.

2c g ,da

20 2h 4b

Figure 4.3: Construction of new NSCs in the first 2 cases of A. Case 1 (left), case 2
(right), see [5].

First, suppose that T', N (3cLl20)° = (. Let P = 2¢(0B3)3a (P is just 2cL?3a if
[,N(2cL?3a)° = 0). Since T', N (2cL?3a)° is contained in (3I',2)°, we have P°NT, C
(3T,2)°. Now we have AOP(2aL?1,4aL?3d;3cL!2b, P). This is illustrated on the
left of figure 11. Note that (3I'2)° is not hatched, showing that this part of I" may

be used by P if necessary.

Second, suppose that I, N (2bL130)° = 0. Since T’} N (2cL?3a)° C (31,2)°, we
may have OOP[1](2aL?1,4aL?3d;2cL?3a, 2bL}3b). This is illustrated on the right of
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figure 4.3. Though these two cases appear similar, they are different.

Finally, we may suppose that there exists I'® = 6 that intersects (20L.3b)° and
I'" = 7 that intersects (3c¢L.2b)°. By lemma 3.2.2, 2,3,6 and 7 are the only com-
ponents of T', N D? intersecting Bs, and I', has (3627). If I, has (271) then
we have OOPI1](2aL?1,4aL23d;2bL}6b,3cL.7b). If T, has (173) then we have
OOP1](2aL?1,4aL?3d; 2bL26b, ThL2b). By symmetry we may also exclude the cases

where I', has (1234), (5234), or (5432).

(B) Suppose I', has (1342). By Lemma 4.1, ',N(2aL21)° = T'\,N(3aL24c)° = 0. Sup-
pose that I', N (2cL23a)° = (), then we have OO P[1](2aL?1, 3aL?4c; 2cL?3a, 2bL13D).
Therefore, we may assume I', N (2cL?3a) # (), and similarly T, N (3dL22a)° # (. Let
'S = 6 intersect (2cL?3a)°, and I'T = 7 intersect (3dL?2a)°. By lemma 3.2.2, 2,3,6,7
are the only components of ', N D? intersecting Bs and T', has (3627). Then we
have OOP[1](2aL?1,3aL2?4c;2cL?6,3dL27). Figure 4.4 shows how new NSCs are

constructed in this case.

1

2e F 2c g

2b 2b

20\ 2a

Figure 4.4: Construction of new NSCs in the first 2 cases of B. Case 1 (left), case 2
(right)

49



By symmetry, we may also exclude the cases where I', has (1243), (5324) or

(5423).

Now we know that I', must have either (1324) or (1423), and either (5243) or
(5342). So the overall order must be (13524) or (14253). These cases are symmet-
ric, so let us assume the order is (14253). Given this order, there is a symmetry that
reverses I', and swaps A, and By. For our standard picture of D?, this amounts to

rotating D? by 180° and reversing I,.

Consider the components of I', N D? that intersect (2aL?2¢)°. Each such compo-
nent lies in 3I',4)°, otherwise we could choose that component as 1 and have case
(A) or (B). Let 1 be the first and 1’ the last such component along 3I",4. (Pos-
sibly 1 = 1’). By Lemma 3.2.2 there are at most three such components, and 1
is the first and 1’ the last, along 2aL?2c. Thus, T, N (2aL21)° = T'(1'L32¢)° = 0.
If there are three distinct components 1, 1*, 1’ in order along T',, then 3al24c
violates C'S(1L21*,1'L?2¢)(i) in Ay. Therefore, there are at most two such com-
ponents. Similarly, at most two components of I', N D? intersects (4cL24a)°, they
lie in (2I',3)° and if 5 is the first and 5’ the last along 2I',3 (possibly 5=5"), then

T, N (4cL25')° =T, N (5L24a)° = 0.

If T, N (2cL?3a)° # 0, we denote the component of I', N D? closest to 3a by 6,
and that closest to 2¢ by 6’ (possibly 6=6"). If T', N (4aL?3d)° # (), we denote the
component of I, N D? closest to 2a by 7 and that closest to 3d by 7’ (possibly 7="7").

By Lemma 3.2.2, T, has (366'277’) suitably modified to identify components that are
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the same and delete components that do not exist. Similarly, if T', N (3aL24c)° # 0,
we denote the component of I, N D? closest to 3a by 8 and that closest to 4c by &
(possibly 8=8"). If ', N (4aL23d)° # () we denote the component of T, N D? closest
to 4a by 9 and that closest to 3d by 9’ (possibly 9=9'). By Lemma 3.2.2, ', has
(388'499’) suitably modified. Note that 6,6',7,7,8,8,9,9 may or may not intersect

L.

Claim 1. At least one of 7 and 8 exists

Proof. If not, we have the OP(3bL4b, 3aL?4c; 3¢L12b, 3dL22a) which produces I",
with || T/ N D? ||=|| T, N D? || and || T, N D} ||=|| T, N D! || —2 contradicting the

minimallity of T',.

Claim 2. At most one of 6 and 7 exists. By symmetry, at most one of 8 and 9

exists.

Proof. Suppose both 6 and 7 exists. By Lemma 3.2.2(i), 2, 3, 7 are the only com-
ponents of I', N D? intersecting Bs, and T', has (3627). To avoid an arc (not nec-
essarily path) from 4 to 5 in Bj violating C'S(6L23a, 7L?2a)(i) in By, I', must have
(275) when it has (374), and must have (573) when it has (462). So I', has either

(364275) or (346257).

Case (2.1) Suppose I', has (364275). If 8 does not exist, let P = 3aL?4c and
P' = 3bLL4b; If 9 does not exist, let P = 4aL23d and P’ = 4bL!3c. In either case we
have OOP[2|(P, P';3dL*7,2cL?6). Therefore, 8 and 9 exist. By lemma 1.3, 3,4,8,9

are the only components of I', N D? intersecting A3, and I, has (3849).
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To avoid an arc from 1 to 2 in A; violating C'S(3aL?8,4aL?9)(7) in Ay, T', must have
(429) when it has (318), and must have (923) when it has (814). So I', has either
(318429) or (381492). If T, has (318429) we have OO P[2](8L24c, 9L23d; 6L23a, TL?2a).

If T', has (381492) we have OOP[5|(8L24c,9L23d; 6L23a, 5L24a).

Case (2.2) Suppose I', has (346257). If T', N (3aL?4c)’ = 0 let P = 3aL?4c and
P = 3bLL4b; if T, N (4al?3d)° = 0 let P = 4aL2?3d and P’ = 4bL23c. In either case

we have OOP[5](P, P; 3dL27,5L24a).

Claim 3. If 7 exists, then 7 = 7" and I', has (275). By symmetry, if 8 exists then

8 =& and I', has (1'84).

Proof. We first show that I', does not have (364). Suppose I', has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P, P’ to be either 3aL?4c,

3bLL4b or 4bL!3c, 4aLl3d. Then we have OO P[5|(P, P'; 3dL27,5L24a).

If 7 # 7' then to avoid an arc from 4 to 5 violating C'S(3dL27',7L?2a)(i) in By,
I', must have (2757’3) and hence (57'3). Thus 7 = 7/, and since I', does not have

(57'3) = (573), it must have (275).

Claim 4. If 6 exists then 6 = 6’ and I" has (462). By symmetry, if 9 exists then 9 = 9

and I', has (492).

Proof. We first show that I', does not have (364). Suppose I', has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P, P’ to be either 3aL?4c,

30L24b or 4bL!3c, 4aL?23d. Then we have OOP[5](P, P'; 6L?3a, 5L?4a).
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If 6 # 6 then to avoid an arc from 4 to 5 violating C'S(2¢L26',6L23a)(i) in By, T,

must have (3646'2) and hence (462).

Now from claim 1 we may assume without loss of generality that 7 exists. By claim
2, 6 does not exist, and at most one of 8 or 9 exists. If 8 exists then I', has (31'84275)
by claim 3, and we get OO P[1'](1'L22¢, 8L24c; 5L24a, TL22a). If 9 exists, then ', has
(31749275) by claim 4 and we get OOP[1']|(1'L?2¢, 4aL?9;5L?4a, TL?*2a). Therefore,

none of 6, 8 or 9 exists.

To summarise; I', has (314275), 7 exists, 7 = 7/, and none of 6, 8, or 9 exists.
To find new NSCs in this situation, we use paths that may lie outside disk D?. By
Lemma 4.3.4 (ii), every edge of L? belongs to a face , contained in D? that includes
a vertex of L. Applying this to an edge of L? with at least one end in 1, we obtain
a face g with at least one vertex v; of 1 and at least one vertex v, of 2b. The only
components of ', N D? that g may intersect are 1, 2 and (if 1 = 1’) 1. By lemma
4.3.4 (ii), g 1 and g N 1’ have at most one component each. Apply lemma 4.3.4 to

g, letting F; and E, be the disks, with boundaries A, and M.

Let O3 be an arc from v; to v, inside g, and let O34 be an arc from an interior point
vz of vw to a vertex vy of 4b inside f, N Ay. Cut A, along Oy, and Os,; the result is

a disk with clockwise boundary (in compressed notation).
O12021; 10405 03T 10205 01 Ty Lo3 Os404 0
V1U12021 | "04U3, V3l [ "UaU 9 U1l [ "U3U34Usl | "1

(We do not distinguish between two copies of O1s, O34, v1, V2, v3, v4 Since it will be

clear which one we mean). This disk contains a slightly smaller disk R, whose
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boundary we divide into left, right, top and bottom segments for convenience.
Reading bottom to top, R has Q; = v;I';'3d(L?)—14al’;'v; on the left and Q, =
vol'g3aL?4cT v, on the right. Reading left to right, R has O;, on the top and O},
on the bottom. We use >, <, >, < to denote order along (); or (), so that, for
example, © > v means u is above v. Along (); we have v; < 3d < 4a < vy, with

da < 1" <wvyif I’ #£ 1. Along Q; we have v3 < 2¢ < 7 < 5 < 3a < 4¢ < 2a < vs.

Now examining (M; U Ms) N R, there must be vertices x; > x5 > x3 > x4 on @,

Y1 > Yo > Yz > Yg ON Qz and paths P, P, P Py in R such that

(i) P, B, Ps, P, are vertex-disjoint, except that P, and P, may intersect at either

both of vy, vy;
(i) Each P, has ends z;, y; and is otherwise disjoint from 0R;
(iii) P, and P, are segments of M;, while P, and P; are segments of M;; and
(iv) :pel,yy €2, zs€lorl’,y, €2

The paths P, and P, are just the obvious segments of g = M;. If M, did not contain
two disjoint paths P,, P; as described, then we could find a circle in F, that was

Non-contractible in S5, contradicting the fact that F is a disk.

If an end of P, or P; belongs to (4aL23d)° or (3aL?Z4c)°, then the path is not essential
because it does not have both ends on I',. However it can be extended to essential
path in more than one way. Given z; > 3d, define X;" to be 4aL?x; if x; < 4a or z;

if z; > 4a. Given z; < 4a, define X, to be x;L23d if z; > 3d or z; otherwise. Define
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Y;" and Y;” on the right similarly based on the relationship of y; to 4c and 3a.

Let w; be the last vertex of 5 along I',. Note that 5L24a = wsL?4a. Suppose first that
73 < 4a. Then necessarily z;, € 1. If y3 < ws then OP(Py, X5 U P3;5L%4a, 7TL?*2a)
produces a separating cycle which does not use 4b; replace vw by vL!w to obtain a
separating cycle avoiding vw. If ws < y3 < 4c¢, then since x4, € 1 we have AOP(X; U
P3UYy , Py;2¢L?3a,3dL27 UTU TL22a). If y3 > 4c then we have the rather compli-

cated AOP (P, X5 UP3UysltdcUdce(L2) ™ 3a; 2¢L23a, 3dL2TUTT 5 U5 L24a).

Now suppose that x3 > 4a, and that y, < 3a. If ', N (3¢L.2b)° = () then we have
AOP(Py, Py;2cL23a,3cL22b). Otherwise 7 must intersect 3cL.2b so 7 has segments

7a,7c,on L? and 7b on L!. Then we have AOP(3aL?4c,4bL}3c; 3cLl7b, 3dL2Ta).

Finally, suppose that X3 > 4a and y, > 3a. If 24 € 1, then OP(P,UY,", Py; 5L24a, 7TL?2a)
produces a separating cycle that does not use 4b; replace vw by vLlw to ob-
tain a separating cycle avoiding vw. If x4 ¢ 1 then 1 # 1’ and z, € 1'. Let
P} = P Uyl e Ude(L?) 3a if yo > 4cand Py = P, UY, if 3a < yp < 4e.

Then we have AOP(Py, Py ;2cL?3a,3dL27 J 70,5 U 5L 4a).

Since the embeddings ¥, and ¥, are equivalent by lemma 4.3.2, all operations
applying on I', also applies similarly on I',, We have covered all cases, so this

concludes the proof.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This chapter presents conclusion of the study and a brief recommendation. We also

suggest possible areas of further study from our results.

5.1 Conclusion

In the conclusion, we comfortably state that the general objective of proving that
every 4-representative graph embedding on the triple torus contains two NSCs
which separates the triple torus into 3 connected components is achieved. This was
done by analysing Ellingman & Zhao’s method of proving that every 4-representative
embedding on the double torus contains an NSC which splits the torus into two

connected components.

After analysing Ellingman & Zhao’s method and applying it to the proof of our
main theorem we it is found that the method works efficiently and our results are

consistent with those obtained by them in their proof.

Therefore it is concluded here that every 4-representative graph embedding on the

triple torus contains two NSCs.
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The notions of equivalence in graph embeddings and that of homeomorphism of
surfaces as defined topologically were used in extending Ellingman & Zhao’s method

to apply on a triple torus.

5.2 Recommendations

We find that Ellingman & Zhao’s method of proving that every 4-representative
embedding on the double tori contains an NSC works efficiently in proving existence
of NSCs in graph embeddings on the triple tori. As it has been done in this study,
by employing equivalence of embeddings and homeomorphism of surfaces it can
therefore be recommended that the method works efficiently in proving existence
of NSCs in triple toroidal embeddings and possibly in embeddings of connected
sums of tori. We recommend that our results can be used to prove existence of
NSCs in 4-representative embeddings on connected sum of tori, and even to other

higher surfaces.

5.3 Future work/Areas of further research

This study of existence of NSCs in critical triple toroidal embeddings sets a foun-
dation for some future areas of study. Our results can motivate further study on

existence of NSCs in graph embeddings on connected sum of n tori for n > 4.
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Abstract

We consider Ellingman and Zhao’s method of proving that every 4-representative
graph embedding on the double torus contains a Non-Contractible Separating Cycle
(NSQ). In literature it has not been proven yet that 4-representative embeddings
on triple tori contains (NSCs). We use existing theorems including Ellingman and
Zhao’s method to prove existence of NSCs in embeddings on the triple torus. We
find that every 4- representative embedding on the triple torus contains two NSCs
which separates the triple torus into 3 connected components, namely punctured
tori, two of them with one boundary circle and one with two boundary circles.

Keywords: Non-contractible Separating Cycle (NSC), embeddings, representativity,
torus, homeomorphism.

1 Introduction

A graph G is a pair of sets, V(G) and E(G), where V(G) is nonempty and E(G) is
a set of 2-element subsets of V(G). A walk in the graph G = (V, E) is a finite se-
quence of the form v;,, e;,,v;,,€j,, ..., €j,, v;,, which consists of alternating vertices
and edges of G. The walk starts at a vertex. A walk is open if v;, # v;,, see [5, 1].
! Graphs can be studied on the sphere (plane), or on other surfaces. A surface is
a compact two-dimensional manifold, possibly with boundary. Equivalently, a sur-
face is a compact topological space that is Hausdorff (any two distinct points have
disjoint neighbourhoods) and such that every point has a neighbourhood homeo-
morphic to a plane or a closed half plane, we refer to [5].

An embedding ¥ of a graph G on a surface ¥ is a crossing free drawing of GG on X..
It maps the vertices of GG to distinct points of 3 and its edges to paths of ¥ whose
endpoints are images of their incident vertices. Representativity of an embedding
is defined as a set p(¥) = min{|I' N G| : I is a Non-contractible simple closed curve
on X }. The embedding is critical if it is close to having NSC, see [6, 2].

T is used to denote the torus. A graph G is toroidal if G embeds in 7' . Let ¥ be
an embedding of G = G(¥) in 7. The closure of each connected component of
T\G(¥) is called a face of ¥ (closed faces are mostly preferred to open ones ). The

lpjuwawo@must.ac.mw (Precious Juwawo)



face set of an embedding V in 7" is denoted by F(V). If the graph is 2-connected
and p(¥) > 2 then each face f is bounded by a cycle, called a facial cycle and is
denoted by df. 0X denotes the boundary of a set X C 7. Two vertices x and y are
cofacial by a face f if x,y € 0f. Embeddings with p(¥) > 4 have all faces bounded
by cycles in graphs, see [6].

Some authors have explored conditions for existence of NSCs of embedded graphs
and some have proven existence of NSCs in graph embeddings under such con-
ditions. Most of these conditions involve representativity or face width of graph
embeddings. Ellingman N. & Zha X in [2] conjectured that if a graph G is embed-
ded on a surface of genus (orientable or non orientable) at least 2, then it may have
a Non contractible separating cycle (NSC). They proved that every 4-representative
graph embedding in the double torus has an NSC which separates the surface into
2 connected components.

In this work we explore existence of non-contractible separating cycles in crit-
ical embeddings on the triple torus. We wish to prove existence of NSCs in 4-
representative graphs embedded on the triple torus.

2 Results

Proposition 2.1: The Cylinder-Strip Lemma. Given a punctured torus 7, with
two boundary circles I', and T, let P,, P, and P,, P} be a pair of parallel disjoint
essential arcs. Let P! be an essential arc disjoint from P, and P, and P/ be an
essential arc disjoint from P, and P]. Then,

(i) Both ends of P/ must lie in the cylinder, C, or both ends must lie in the strip, S,
of C,S.(P,, P)).

(ii) Both ends of P’ must lie in the cylinder, C}, or both ends must lie in the strip, .S,
Of CbSb(Pb, Pl;)

(iii) If both ends of P! lie in the strip S,, then they lie at opposite ends.
(iv) If both ends of P/ lie in the strip \S;, then they lie at opposite ends.

Let D be a closed disk in ¥, (a punctured surface) and suppose ' N D = I"'N 9D
consists of a finite number of components. We say that I and D intersect essentially
if every arc in D joining two distinct components of ' D is essential. The following
lemma shows how many possible components of I' N D can occur in a punctured
torus.

Lemma 2.2: Suppose I', and I', are boundary circles of a punctured torus 7;, and
I', and T’y intersect disks D, and D, essentially, respectively. Let L, = 9D, and



Ly = 0D, both oriented clockwise. Let I'} T2 ... T'* be the components of ', N D, =
[,N L, and T}, T2, ..., T be the components of I', N D, = T, N L, both oriented
clockwise along their respective boundaries where I, = 2 L,y’ and T} = 27 Ly’ for
each i and j respectively.

1 k<4

(i) Ifk = 2then (y!, 2}, y2 22) occur in that clockwise order along T, and (v}, x}, y2, z2)
occur in that clockwise order along I’

(iii) If k£ = 3 then (y., 2}, y2, 22, y2, 23) occur in that clockwise order along I, and
(v}, i, y2, 3, y3, ¥3) occur in that clockwise order along T,

(iv) If k = 4 then (y}, 2L 42, 22 43, 23, 42, 22) occur in that clockwise order along T',
and

(v}, o, y2, 2, v, o3, yi, ) occur in that clockwise order along T,

Proof. By expanding D, and or D, slightly if necessary, we may assume that x* # y’
for all i and similarly that mi + ?/i for all j. If we add a disk D, along I',, L, and T,
are both contractible and have natural clockwise orientations, which must oppose
each other where they meet. Thus y/ is followed on T', by z! and z must be
followed by some 3. On the other hand, if we add a disk D, along ', L, and T, are
both contractible and have natural clockwise orientations, which must oppose each
other where they meet. Thus ¢} is followed on T, by ] and ] must be followed by
some yj.

We first prove (ii), (iii) and (iv) and then prove (i).
(ii) When k = 2 the given orders are the only possible ones.

(iii) Suppose k = 3. There are only two possible clockwise orders along I',. If
the order is (y}, 2}, y3, 23 42, 22) then the essential arc y3L,z! has both ends at the
same end of the strip of C, S, (y. L,22, y? L,x?) contradicting (iii) of the cylinder-strip
lemma and if the order is (v}, zi, y3, =3, y2, z2) then the essential arc y; L,x] has both
ends at the same end of the strip of C,S,(y} Lyz7, yi Lyx;) contradicting (iv) of the

cylinder-strip lemma.

(iii) By shifting D, slightly we may apply (iii) separately to both collections I}, T2,
I and T}, T3, I and get the required order. Also by By shifting D, slightly we
may apply (iii) separately to both collections I';, T'?, '} and I'}, T';, I'} and get the
required order.

(i) If £ > 5, then by shifting the disk D, slightly we may assume that £ = 5. By sim-
ilar reasoning to (iv) the clockwise order must be (y}, zl y2 22 43, 23 y2 x2 42 29).
Now the essential arc y!L,x> has one end in the cylinder and the other end in the



strip of C,S.(y2 Loz, y?L,x3) contradicting (i) of the cylinder-strip lemma. On the
other hand, by shifting the disk D, slightly we may assume that £ = 5. By simi-
lar reasoning to (iv) the clockwise order must be (v}, x}, 2, 22, v}, 3, i, x5, vp, 7).
Now the essential arc y; L,z has one end in the cylinder and the other end in the
strip of CySy(y; Lyz}, yi Lyx;) contradicting (ii) of the cylinder-strip lemma.

2.1 The double and triple tori

Suppose we have an oriented non contractible separating circle I" of the torus 5.
It separates S, into two punctured tori Ay, By, which are both closed and include I'.
When convinient, A, is completed with disc A* to a torus A and B, with a disk B*
to a torus B. If both A and B inherit the orientation of S,, I" will be clockwise in
A and anticlockwise in B. In other words, I" goes clockwise around A* so A* is to
the right of I in A, and A, is to the left of I" in both A and S;. Similarly B, is to the
right of I". See figure 1.

Figure 1: NSCI" on a double torus

Now we consider a triple torus S3. Suppose we have 2 oriented noncontractible
separating circles I',, I', of the triple torus. Together they separate the triple torus
into three punctured tori, Ay, By, Cy. Ag contains I',, By contains both I', and T’
and () contains ', meaning that both A,, By and (), are closed. When convinient,
we will complete A, with disk A* to torus A, By with disks B} and B} to torus B
and C, with disk C* to torus C.

Ap and () are punctured tori with one boundary circle each, I', and I', respectively.
By is a punctured torus with two boundary circles I', and I',. We assume that T,
goes clockwise around A*. So A* is to the right of I', in A and A, is to the left of T,



in both A and S3. I', goes clockwise around C* in C' so C* is to the right of [, in C
and Cj to the left of ', in both C' and S3. Since I', goes clockwise around A* in A,
it goes anticlockwise in B, meaning B is to the left of T, in that case. Similarly B,
is to the right of I';. See figure 2.

Figure 2: NSCs I', and I';, on a triple torus

We now discuss some of the ways I', and I', can pass through given closed disks D,
and D,. Let L, = 0D, and L, = 0D,. Suppose I',N D, has finitely many components
including but not limited to '}, T2, T'3, T4 and I',N D, has finitely many components
Iy, T2, T3, Ty with;

i. Each I’ N L, has at most 2 components, 1 < 7 < 4 and FZ N Ly has at most 2
components 1 < ;5 <4

ii. There is an arc P, in D, with ends on L, and P C D¢ such that P, NI, =
x1,x9, T3, T4 Where xy, To, x3, x4 are in that order along P;. Each x; belongs to
I'" and T2 and I'? cross (not just intersect) P, at x, and w3 respectively.

Similarly there is an arc P, in D, with ends on L, and Py C D, such that
P, N Ty = 41,99, Y3, ys Where 1, yo, y3, y4 are in that order along P,. Each y;
belongs to I'} and I'; and I} cross P, at y, and y; respectively.

Assume that x; P2y C Ay and y, Poys C By. For each i, let ia denote the first
component of I N L, following T along I, and b the last. And for each j let jd
denote the first component of I'} N L, following I'} along I', and j f the last.

By the fact that I',, is separating and using orientations of A, and B, the components
la, 2b, 3a, 4b, 4a, 3b, 2a, 1b occur in that clockwise order along L, (so 2a # 2b, 3a #
3b, but possibly 1a = 1b or 4a = 4b). Similarly by the fact that ', is separating and



using the orientations of B, and C, the components 1d, 2e, 3d, 4e, 4d, 3e, 2d, le
occur in that clockwise order along L, (so 2e # 2d, 3d # 3e but possibly 1d = 1e, or
4e = 4d)

There are six possible cyclic orders in which components I'}, T2, T3, I'* can occur

along I', and six possible cyclic orders in which components I';, I'Z, T}, I'} can occur
along I',. In each case they occur in pairs which are equivalent up to reversal of ',
and Iy, respectively. If we know that I, intersects the (closures of the) components
of D,\I', essentially, then for some of these orders we can place restrictions on
where additional components of I', N D, can be. Similarly if we know that I,
intersects the (closures of the) components of D,\I', essentially, then for some of
these orders we can place restrictions on where additional components of I', N D,
can be.

The following lemma shows possible orders of arrangements of segments of I', N D,
and I', N D, on a triple torus.

Lemma 2.1.1: Suppose I', and I', are two non-contractible separating circles of S;
with disks D, and D, and components I'}, T2, I3, 'Y of ', N D, and components
I, T2, T3, T of Ty N Dy as described above. Suppose further that I', intersects the
closure of every component of D,\I', essentially (in A, or B, as appropriate) and
that I', intersects the closure of every component of D,\I', essentially (in B, or Cj
as appropriate).

1. If the components occur along I, in the order (1432) then I', N (2aL,1b)° =
[, N (4aL,3b)° = () and if the components occur along T', in the order (1432)
then I', N (2dLyle)° =Ty N (4dLy3e)’ = )

2. If the components occur along I, in the order (1342) then I', N (2aL,1b)° =
[, N (3aL,4b)° = () and if the components occur along T', in the order (1342)
then I', N (2dLyle)° = Ty N (3dLyde)’ =0

Proof: Suppose in Case 1 that T', N (2aL,1b)° # (. Let T'> (or for short 5) be the
component of I' N (2aL,1b)° closest to 1b on L,. By lemma 2.2 (iii), 5 C (2b',1a)°.
But then 57,15 violates C,S,(1aL,2b,3aL,4b)(i) (i,e violates Lemma 2.1(i)). Here
it is necessary if I'! = 1a = 1b is a single point. Thus, T', N (2aL,10)° = . Simi-
larly suppose that I', N (2dLyle)° # (. Let I'; be the component of I', N (2dL;1e)°
closest to le on L,. By lemma 2.2 (iii), Iy C (2eI',1d)°. But then 5Lle vio-
lates C,Sy(1dLy2e, 3d Lyde)(ii)(i.e violates Lemma 2.1 (ii)). Here it is necessary if
[} = 1d = le is a single point. Thus ', N (2dLle)° = .

Similarly suppose in Case 2 that ', N (2aL,1b) # (. Let I'> be the component of
I'.N(2aL,1b)° closest to 1b on L,. By lemma 2.2 (iii), 5 C (2b',1a)°. But then 5L,1b
violates C,S,(1aL,2b,4aL,3b)(i)(i.e violates Lemma 2.1 (i)). (Note: We assume



that essential arcs can be shifted slightly if necessary to apply the Cylinder-Strip
Lemma). Here it is necessary if I'. = 1a = 1b is a single point. Thus, I',N(2aL,10)° =
(. On the other hand suppose that I', N (2dL,1e)° # (). Let I'; be the component of
[',N(2dLy1e)° closest to 1e on L. By lemma 2.2 (iii), I’} C (2¢I',1d)°. But then 5L1e
violates C},Sy(1dL,2e,4dL,3e)(it)(i.e violates Lemma 2.1 (ii)). Here it is necessary
if '} = 1d = 1le is a single point. Thus I', N (2dL,1e)° = (). The rest of the proof is
similar.

2.2 Noncontractible Separating Circles (NSCs)

Next we discuss a method of constructing new NSCs from old ones on general
surfaces in theorem 2.2.1 and Corollary 2.2.2 will show how this applies to a triple
torus.

Theorem 2.2.1: Let ¥ be a surface with two oriented NSCs I', and I', separating
the surface into 3 closed components Ay, By and Cy. Suppose there are sections I'.,
2,13, I'? of T, in that order along I',, and sections '}, I'Z, I's, I'} of ', in that order
along I'y. Suppose further that there are arcs Py,, P34 in Ag, QQ23, Q41 in By, also,
Q12, Q34 in By and Rys, R4 in Cy, such that;

() T}, 12,13 T4 are disjoint, so are I'}, T'7, T3, T’}

(ii) Py, P§,, 35, Q4 are disjoint from I';, and Q)9,, Q%,, RS, R}, are disjoint from
I

(iii) P2 has ends a, ao; P34 has ends as, as; Q23 has ends by, bs; Q41 has ends by, by
where «a;, b; are two ends of each I'! (not necessarily in order along T',); Q12
has ends ¢;, ¢o; Q34 has ends c3, ¢4; Ros has ends ds, d; and Ry, has ends d,
d,; where ¢;, b; are two ends of each I} (not necessarily in order along T;).

(iv) P12 U P34 separates Aj into a component A; with boundary P, U asl'yas U
P34 U aylyay (one circle) and a component A, with boundary (a;T",as U Pyo) U
(aslqas U Psy) (two circles). Qo3 U Q4 similarly separates By into a component
B; with boundary Q23 U b3I',by U Q41 Ub T, by (0ne circle) and a component B,
with boundary (bsI",b3 U Q23) U (041,01 U Q41) (two circles). In the same way;,
Q12U Q34 separates By into a component Bs with boundary Q12 Ucol'yes UQ34 U
c4I'ye1 (one circle) and a component B, with boundary (¢;1'yco UQ12U (e31'pc4 U
()34) (two circles), while Ro3 U Ry similarly separates Cj into a component C
with boundary Ry3 U d3['yds U Ry U d1T'ydy (one circle) and a component Cy
with boundary (daT'yds U Ra3) U (dsI'ydy U Ryy) (two circles). Then;

F,:F(IIUPQUFZUQQgUFZUP34UF3UQ41 and

I =T, UQaUT?U Ry UTY U Q34 UTE U Ry, are also Non-contractible



separating circles in X2, separating A, U B, from A, U B; and B; U C, from
B, U C] respectively.

Proof. We observe from the conditions of the theorem that I separates A;U B, from
As U By and that I separates B; U Cs from B, U C. It is enough to show that both
[ and I'” are Non-contractible or equivalently that none of A; U By, Ay U By,B3UCy
and B, U C is homeomorphic to a disk.

Since A; has one boundary circle, it is homeomorphic to a disk with handles and
or crosscaps attached. Since B; has two boundary circles, it is homeomorphic to
a cylinder with handles and or crosscaps attached. If A; is just a disk and B, just
a cylinder, the way they are attached along the segments of ', between I'? and
I and between I'} and I'} means that the result would be homeomorphic to a
punctured torus. More generally, the result is homeomorhic to a punctured torus
with handles and or crosscaps added, which is not a disk. Therefore A; U B is not
a disk. Similarly, it can be shown that A, U B;, B3 U (3 and B, U C are not disks,
then

["=T UP,UT2UQuUIBUP,UTIUQy
is Non-contractible and
I =T} UQ2UT? U Ry3 UT U Q34 UTE U Ry, is also Non-contractible.

We now apply this to the triple torus, with weaker versions of conditions (ii) and
(iv), and stating condition (iv) in a way that is specific to the triple torus.

Corollary 2.2.2. Suppose I', and I', are two Non-contractible separating circles in
the triple torus S3, separating S3 into three (closed) punctured tori Ay, By and Cj.
Suppose there are sections '}, T'2, T3, T'4 of I',, in that order along I',, and sections
I}, T2, T3, T} of T, in that order along Ty, arcs Pjo, Psy in Ag; Qa3, Qq1 in By 5 Q12,
(34 in By and R,3, R4 in Cj such that;

() T, 12,13, T4 are disjoint, so are I'}, T'7, T3, T’}

(i) Py, P3,, Q%4 @3, are disjoint from I', and Q%,, %4, RSs, R}, are disjoint from
Iy

(iii) P2 has ends a4, as; P34 has ends as, as; Q23 has ends by, b3 and ()4; has ends
by, by where a;, b; are two ends of each I'!, (not necessarily in order along T',)
and (1, has ends ¢, ¢y, Q34 has ends c3, ¢4, Ro3 has ends ds, d3 and Ry has
ends dy, d, where c;, b; are two ends of each T (not necessarily in order along
Fb).

(iv) Py, P34 are homotopic with endpoints fixed in Aq to a pair of parallel essential
arcs and ()23, Q41 are homotopic with endpoints fixed in B, to a pair of parallel



essential arcs. Similarly ()15, ()34 are homotopic with endpoints fixed in By to
a pair of parallel essential arcs and Ry3, R4 are homotopic with endpoints
fixed in () to a pair of parallel essential arcs. Then;

F/:FéUP12UI%UQQ?)UFZUPPAUI%UQZHand

[ =TUQ12UT2U Ry UTUQ3,UT U Ry are also Non-contractible separating
circles in Ss.

Proof: Conditions (ii) and (iv) mean that by shifting I, slightly, we can make Py,
P34 and ()93, (41 into pairs of parallel essential arcs. Similarly, by shifting I', slightly
we can make )12, (34 and Rs3, R4 into pairs of parallel essential arcs. Then each of
the (slightly shifted) punctured tori is separated into a cylinder and a strip in each
case. Now applying Theorem 2.2.1 completes the proof.

Sets of arcs Pia, Py, Q23, Q41 and Q12, Q34, Ra3, R4 satisfying Corollary 2.2.2 are
called orthogonal arrangements of parallel arcs, or OP for short. They are referred
to as OP(PH, Psy; Qas3, Q41) and OP(QM; Q34; Ro3, R41)- The arcs Pia, P34, Q23, Qui
are not required to have interiors disjoint from T',, just from sections '}, I'2, T3, "2,
Similarly, the arcs 12, 34, Ra3, R4 are not required to have interiors disjoint from
[y, but just from sections '}, I'7, I's, T'y. The most common case of this is illustrated
in figure 3. When forming an OP, the two hatched essential arcs joined by a hatched
segment of I' may be considered equivalent to the single dashed essential arc, as
long as the hatched segment of I', does not intersect I}, T'2 T3 T4,

Figure 3: Equivalent to an essential arc, see [2].

2.3 Critical Embeddings

In proving the existence of NSCs, Ellingman in [2] used an approach of examining
embeddings which are very close to having an NSC.

The following lemma justifies existence of NSCs in critical embeddings with critical
edges.

Lemma 2.3.1 : Let X be a suitable surface (one with genus at least 2), and k£ > 3
(the representativity of an embedding on such a surface). Suppose there is a k-
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representative embedding in > that does not have an NSC. Then there exists a
k-representative embedding ¥ of a simple 2-connected graph in ¥ that does not
have an NSC, with a face f containing non-adjacent vertices z, y so that when the
edge xy is inserted across the face f, U = ¥ U 2y has an NSC. We call ¥ a critical
embedding with critical edge xy, see [2].

Proof: Let ¥, be a k-representative embedding of a graph G, in ¥ with no NSC.
Since k£ > 3 and since multiple edges bounding a disk can be reduced to a single
edge without affecting existence of an NSC, we may assume that G, is simple.
Moreover, by reducing it to essential 2-component, we may assume that Gy is 2-
connected.

Ellingman N. & Zha X in [2] defined an augmentation of an embedding to be ei-
ther;

(i) The addition of an edge across a face between two nonadjacent vertices on
that face or,

(i) If every face is a triangle as in triangulation (bounded by a 3-cycle), then in
some face (uvw) subdivide one edge uv with a new vertex x and then add the
edge uz

Neither (i) nor (ii) decreases the representativity. In a sequence of augmentations,
any augmentation following one of type (ii) must be of type (i).

If we apply a sequence of augmentations to ¥, each embedding is k-representative
with a graph that is simple and 2-connected. Moreover, by applying a sequence
of augmentations to ¥, we can increase its representativity arbitrarily. First, we
complete ¥, to a triangulation using type (i) augmentations. It is well known that
in a triangulation, representativity equals the length of a shortest noncontractible
cycle.

Given an edge e = vw on a shortest noncontractible cycle, belonging to two trian-
gles (vvw) and (twv), we can apply four augmentations of type (ii), (i), (ii), (i) with
the effect of deleting vw, adding two new vertices z, x5, and adding paths vx;w,
vrow, urirot. This destroys all shortest noncontractible cycles through e without
creating any new shortest noncontractible cycles. After destroying all shortest non-
contractible cycles in this way, the representativity must increase by at least one,
then we can repeat the process. The essence of repeating the process is to raise rep-
resentativity to 6 at which point Zha & Zhao in [6] proved that an NSC exists.

Therefore, it is possible to apply a sequence of augmentations to ¥, to raise the rep-
resentativity to at least 6, at which point an NSC exist. Let ¥ be an embedding in
the sequence before the first augmentation that creates an NSC. Type (ii) augmen-
tations cannot create an NSC if one does not already exist. So the augmentations is
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of type (i) and the result follows.

2.4 The Main Result

In this section, it is shown that every embedding on the triple torus with repre-
sentativity at least 4 contains two NSCs. We begin with a standard result on 4-
representative graphs.

Definition 2.4.1: Equivalence of embeddings: Two embeddings ¥, : G — X
and ¥, : G — ¥ are equivalent, denoted by ¥, = V¥, if there exists a graph
automorphism « : G — G and an orientation preserving surface homeomorphism
n : ¥ — ¥ for which the map compositions ¥V,on: G — Y and ao V¥, : G — X
are identical , see [4].

The following lemma shows how two, 4-representative graph embeddings on the
triple torus are equivalent.

Lemma 2.4.2: Let ¥, : G — S; and V¥, : G — S5 be two embeddings of a graph
G into the triple torus S;. Suppose there exists an automorphism o : G — G
between G and itself. Then the embeddings ¥, : G — S; and ¥, : G — S5 are
equivalent.

Proof: First we show that there is an orientation preserving surface homeomor-
phism 7 : S3 — S5. [Bernadi. O (2011)] argued that a map is a connected graph
embedded on a surface, considered up to orientation preserving homeomorphism.
This is obvious since a triple torus is always homeomorphic to itself. For easy iden-
tification of the preservation of the orientation, we consider the case where the
homeomorphism 7 is an identity map.

Finally we show that the map compositions ¥, on: G — Sz3and ao ¥, : G — S;
are identical. Let e be an arc with end points v, w on Ss, then n(e) = e since 7 is
identity map. Since V¥, is an embedding, V,((u,v)) = e. Similarly, let ¢ be an edge
of graph G with end points u, v, i.e, edge (u,v). Then since ¥, is an embedding,
U, ((u,v)) = e where e is an arc on S;. Applying 7 on e we have 7n(e) = e since e is
an identity map. Hence, the two embeddings ¥, and ¥, are equivalent.

The lemma below shows the existence of a disk D which contains the union of f
and all faces that share at least one vertex with f, given that f is the face of an
embedding which has representativity at least 3. The subsequent lemma shows
how this applies to 4-representative embeddings on the triple torus.

Lemma 2.4.3: Let f be a face of an embedding ¥ : G — 3, where ¥ is not a 2-
sphere. Let k£ be an integer such that p(\U, f) > 2k + 1 and let B,(f) be the union of
f and all faces that share at least one vertex with f. Then there is a disk Dy (f) C &
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which contains By (f) such that 9Dy (f) C 0Bx(f), see [7].

Proof: Any contractible simple closed curve v € ¥ bounds a unique disc since X is
not a 2-sphere. Denote this disc by int(y). Clearly, any disc containing By (f) must
contain the disk int(~) for any simple closed curve ~ in By(f). Let

Dy = By(f)U{int(y) | v is a simple closed curve in By (f)}.

Each closed curve v in D;, is homotopic to some closed curve contained in By (f)
since any part of v in int(~y) can be moved by homotopy to the boundary of int(y),
which is contained in By(f). Dy is simply connected and it is also connected by
construction and 9D, C 9By(f). Since the only simply connected compact surfaces
are the 2-sphere and the closed disk, it suffices to show that D, is a 2-manifold
with boundary. By construction it follows that D, is closed. Moreover D, is a
union of closed faces. Therefore, a singularity can only appear at the vertex of the
embedded graph. But by the following reason a true singularity is excluded. If g
and h are faces in By (f) meeting at a vertex z, let v be a closed curve starting at
a point in int(f) leading to g going through z to h, and returning to f, such that
| z€ S' | y(2) € ¥(G) |< 2k + 1. Since p(f) > 2k + 1, v bounds a disk in Dy.
Consequently all the faces at x which lie between g and h (one or the other side)
also lie in D;,.

Lemma 2.4.4: Let f, and f, be faces of two 4-representative embeddings ¥, and
U, which are equivalent on the triple torus, and let F, be the union of f, and all
faces that share at least one vertex with f,. Similarly let F; be the union of f, and
all faces that share at least one vertex with f;.

(i) The face f, is a disk D} with boundary cycle L}, and there is a disk D? > D!
with boundary cycle L2, such that F C D? and L? = 9D? C OF,. Similarly,
the face f, is a disk D} with boundary cycle L;, and there is a disk D} D> D}
with boundary cycle L?, such that F C D? and L} = 0D} C OF,

(ii) Any path P, in D? with both ends on L? must be a segment of L? or must
contain a vertex of L! and any path P, in D} with both ends on L} must be a
segment of L? or must contain a vertex of L;

Proof.
i (i) is a special case of Lemma 2.4.3.

i If (ii) fails, there would be a path P, in D? internally disjoint from L? joining two
vertices of L2 and not intersecting L.. Labeling the ends a, b of P, appropriately,
P,UbL?a would separate (aL2b)° from L. But this contradicts the fact that since
L? C OF,, every point of L? has an arc joining it to L. that does not intersect
the graph except at its endpoints. Similarly, there would be a path P, in D}
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internally disjoint from L? joining two vertices of L? and not intersecting L;.
Labeling the ends d, e of P, appropriately, P, U dLie would separate (dL3e)°
from L;. But this contradicts the fact that since L7 C 0F,, every point of L? has
an arc joining it to L} that does not intersect the graph except at its endpoints.

We now present the main theorem.

Theorem 2.4.5: Every 4-representative embedding on the triple torus contains two
NSCs which splits the triple torus into 3 connected components.

Proof: Suppose the theorem is false. By Lemma 2.3.1, there are critical 4-representative
embeddings ¥, and ¥, (of simple 2-connected graphs) with no NSC, while U} =

¥, Uvw and ¥ = ¥, U zy have NSCs. Suppose that vw is added across the face f,
and zy across the face f,. Let D}, D2, [}, [? and let D}, D?, L}, L? be as provided

by Lemma 2.4.4 for both f, and f, and let L, = L} U L? and L, = L} U L}.

Every NSC in ¥ must contain the edge vw and every NSC in ¥, must contain the
edge zy. Of all NSCs in ¥/, let ', be the one that minimises | T, N D? || (the
number of components in I', N D?) and subject to this also minimises || ', N D ||.
Similarly let T', be the one that minimises || T', N D? || (the number of components
in T', N D?) and subject to this also minimises || T', N D} ||

Then each component of ', N Dg contains at most one component of I', N D}z (and
using lemma 2.4.4 (ii)), at most 2 components of I, N L2. By the same argument,
each component of I', N D? contains at most one component of I', N D} (and using
lemma 2.4.4 (ii)), at most 2 components of I', N L?. We often abbreviate I to i.
(In later parts of the proof we also use components of I",, abbreviated ', where
i =1,2,... and components of I}, abbreviated j’, where j = 1,2,...). We represent
subsegments of component ¢ as ij where j is a letter, e.g 3a is a subsegment of
3=T3,

Since ¥, and V¥, are equivalent by lemma 2.4.2, all operations on I', applies simi-
larly on I',. We now focus on I', and conclude to operations of I';, by equivalence of
the embeddings.

The minimality assumption further guarantees that any arc in D? that joins different
components [, T of ' D? and is otherwise disjoint from T', is essential. If it were
not essential then we could replace one of the segments :I',j or jI',i with a section
of L2, reducing || ', N D? ||. This is true even if the segment of L? we wish to use,
intersects other components of I'2 N D2, because those other components must also
be part of the segment of I', we are replacing.

Let I'? be the component of I', N D? that contains vw. Then I') N L, has four
components which we name 3a, 3b, 3¢, 3d in order along I', with 3a,3d C L? and
3b,3c C L!. We may assume that v € 3b and w € 3c. For ease of description, we
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assume that D? is drawn as a circular disk and I'? passes downwards through D2,
with 3a containing its top point and 3d its bottom point. Other than I'}, no other
component of I', N D? contains more than one component of T', N L.

In fact, any other component I'. of I', N D? is one of two types. If || [/ N D! ||=1, 4 is
a segment of L2. Otherwise, || I'. N L, ||= 3 and i includes two segments ia, ic of L?
and one segment ib of L} with ia, ib, ic in that order along T',. Since ¥, is critical, T,
intersects both (30L.3c)° and (3¢L!3b)°, otherwise we could reroute T', to avoid (the
interior of) 3b[',3c = vw. Moreover, each component of I, N D? which intersects
(3¢L!3b)° cannot be rerouted via 3dL23a or we could reduce || T', N D} |.

Let T2 denote any such component, with 2a,2¢ C L? and 20 C L}. Note that I'?
passes upwards through D2, so that the half of f, to the right of ' is also to the
right of T'2. Since I'? cannot be rerouted there is at least one component of T', N D?
that intersects (2aL?2c¢)°. Let I'! denote any such component, which must be a
segment of L? and passes downwards through D?. In similar way, we can find I'
passing upwards through D?, intersecting (3aL?2c¢)° at 4a and 4c and intersecting
(3bL13c)° at 4b. Then we must also have I'> = 5 passing downwards through D? and
contained in (4cL?4a)°. In general, it is not known whether a given component of
I',NL, is trivial(single vertex) or not. The above description can be well represented
by figure 4.

Figure 4: Segments of " in D, , see [2].

Let A, denote the part of S5 to the left of I',, and B, the part to the right; Also B
is the part of S3 to the left of I', and C to the right. Ay, B, and C,, are punctured
tori. For i > 1, let A; denote the unique component of Ay N D? to which I"! belongs;
define B; similarly. (If T, C L2, one of A; or B; will be just T, itself). We know that
Ay = Ay, By = B3, A3 = Ay and B, = Bs.

We will frequently use the orthogonal arrangements of parallel paths to construct a
new NSC I/ in ¥/. In notation, OP(P, P’;Q,Q’), P, P’ will be paths in A, and Q,
Q' those in Bj. There are two common ways in which this provides a contradiction.
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First, I/ may avoid the edge vw, and so be an NSC for V,; we indicate this by
AOP(P,P';Q, Q). Second, I, N D? may have fewer components than I', N D2; we
indicate this by COP(P, P'; Q, Q).

Suppose P, P', Q, @' all lie in D?. When we form I"/, from I', we delete the interiors
of four nontrivial segments of I',, say S;, Sz, S3, Sy and then add the interiors of
P, P, Q, Q. Each end of S; lies in some component of ', N D2. Suppose each
S; intersects s; components of 'y, N D2, then s; > 1. When we delete S, the
number of components in D? changes by 2 — s;. When we add P°, P, Q, Q",
the number of components in D? changes by -4. Thus || I, N D? ||=| T, N D? ||
+4 — 81 — S9 — S3 — S4.

The above analysis is valid even when the interiors of P, P/, ), Q' intersect com-
ponents of T', N D2. If we do not have s; = sy = s3 = s4 = 1, then we have
COP(P,P;Q,Q"). In particular, let OOP[i](P, P’;Q,(Q’) denote the situation in
which some component i of ', N D? contains an odd number of the eight endpoints
of P,P";Q,()" (counted with multiplicity). Then s; > 1 for some j, so this is a
special case of COP(P, P';Q, Q).

Now we break into cases according to the order of 1,2,3,4,5 along I',. For any
distinct components iy, is,...,iy of I';N D2, we say that ', has (iyis, ..., i1,) if i1, 9,...,1s,
occur in that order along I',.

(A) Suppose I', has (1432). (Since we do not mention component 5, no assumption
is made about its position). By lemma 2.1.1, T', N (2aL?1)° = T, N (4aL?3d)° = 0.
Note that by lemma 2.2, T', N (2¢L23a)° C (3T,2)°.

For easy understanding of the subsequent arguments in the proof, figure 5 shows
how we construct new NSCs using corollary 2.2.2 in the first two cases here. The
solid chords are essential paths in A, the dashed chords are essential paths in B,,
and the edges of I" used by the new NSC are hatched.

3 3 My 3a

Figure 5: Construction of new NSCs in the first 2 cases of A. Case 1 (left), case 2
(right) , see [2].

First, suppose that T', N (3cLl20)° = (. Let P = 2¢(0B3)3a (P is just 2cL?3a if
[,N(2cL?3a)’ = ). Since T', N (2cL?3a)° is contained in (3[',2)°, we have P°NT, C
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(3T,2)°. Now we have AOP(2aL?1,4aL?3d;3cL}2b, P). This is illustrated on the
left of figure 5. Note that (3I'2)° is not hatched, showing that this part of I" may be
used by P if necessary.

Second, suppose that T, N (2bL130)° = 0. Since T'! N (2cL?3a)° C (31,2)°, we
may have OOP[1](2aL?1,4aL?3d;2cL?3a, 2bL.3b). This is illustrated on the right of
figure 5 Though these two cases appear similar, they are different.

Finally, we may suppose that there exists IS = 6 that intersects (20L.3b)° and
I'" = 7 that intersects (3cL!2b)°. By lemma 2.2, 2,3,6 and 7 are the only com-
ponents of T', N D? intersecting Bs, and I', has (3627). If T, has (271) then
we have OOPI1](2aL?1,4aL?3d;2bLL6b,3cLL7b). If T, has (173) then we have
OOP1](2aL?1,4aL?3d; 2bL26b, ThL20b). By symmetry we may also exclude the cases
where I', has (1234), (5234), or (5432).

(B) Suppose T', has (1342). By Lemma 2.1.1, T', N (2aL21)° = T, N (3aL?4c)° = 0.
Suppose that T',N(2cL23a)° = ), then we have OO P[1](2aL?1, 3aL24c; 2cL?3a, 2bL}3b).
Therefore, we may assume I', N (2¢L23a) # 0, and similarly T', N (3dL22a)° # . Let
'S = 6 intersect (2cL23a), and I'? = 7 intersect (3dL?2a)°. By lemma 2.2, 2,3,6,7
are the only components of I', N D? intersecting B3 and I', has (3627). Then we
have OOP[1](2aL?1,3aL24c; 2¢L26,3dL2T). Figure 6 shows how new NSCs are con-
structed in this case.

Figure 6: Construction of new NSCs in the first 2 cases of B. Case 1 (left), case 2
(right)

By symmetry, we may also exclude the cases where I', has (1243), (5324) or
(5423).

Now we know that I', must have either (1324) or (1423), and either (5243) or
(5342). So the overall order must be (13524) or (14253). These cases are symmet-
ric, so let us assume the order is (14253). Given this order, there is a symmetry that
reverses [, and swaps A and By. For our standard picture of D?, this amounts to
rotating D? by 180° and reversing T',.

Consider the components of ', N D? that intersect (2aL?2c¢)°. Each such component
lies in 3I',4)°, otherwise we could choose that component as 1 and have case (A) or
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(B). Let 1 be the first and 1’ the last such component along 3I',4. (Possibly 1 = 1').
By Lemma 2.2 there are at most three such components, and 1 is the first and 1’ the
last, along 2aL?2c. Thus, T', N (2aL21)° = T'(1'L22¢)° = (. If there are three distinct
components 1, 1*, 1 in order along T',, then 3aL24c violates C'S(1L21*,1'L22c¢)(4)
in Ay. Therefore, there are at most two such components. Similarly, at most two
components of I',ND? intersects (4cL?4a)°, they lie in (2T',3) and if 5 is the first and
5 the last along 2T',3 (possibly 5=5'), then ', N (4¢L25')° = T, N (5L24a)° = 0.

If T, N (2cL?3a)° # (), we denote the component of I', N D? closest to 3a by 6,
and that closest to 2¢ by 6’ (possibly 6=6"). If ', N (4aL?3d)° # (), we denote the
component of I', N D? closest to 2a by 7 and that closest to 3d by 7’ (possibly 7=T7").
By Lemma 2.2, I', has (366'277") suitably modified to identify components that are
the same and delete components that do not exist. Similarly, if T', N (3aL24c)° # 0,
we denote the component of I, N D? closest to 3a by 8 and that closest to 4c by &
(possibly 8=8"). If I',N(4aL?3d)° # () we denote the component of I',N D? closest to
4a by 9 and that closest to 3d by 9’ (possibly 9=9'). By Lemma 2.2, I, has (388'499")
suitably modified. Note that 6,6’,7,7',8,8,9,9 may or may not intersect L..

Claim 1. At least one of 7 and 8 exists

Proof. If not, we have the OP(3bL}4b, 3aL24c; 3¢L}2b, 3dL22a) which produces I",
with || T N D? ||=|| T, N D? || and || T, n D} ||=|| To N D} || —2 contradicting the
minimallity of T',.

Claim 2. At most one of 6 and 7 exists. By symmetry, at most one of 8 and 9
exists.

Proof. Suppose both 6 and 7 exists. By Lemma 2.2(i), 2, 3, 7 are the only com-
ponents of I', N D? intersecting Bs, and T', has (3627). To avoid an arc (not nec-
essarily path) from 4 to 5 in Bs violating C'S(6L23a, 7L?2a)(i) in By, I', must have
(275) when it has (374), and must have (573) when it has (462). So I', has either
(364275) or (346257).

Case (2.1) Suppose I', has (364275). If 8 does not exist, let P = 3aL?4c and
P" = 3bL.4b; If 9 does not exist, let P = 4aL23d and P’ = 4bL.3c. In either case we
have OOP[2|(P, P';3dL27,2¢L?6). Therefore, 8 and 9 exist. By lemma 1.3, 3,4,8,9
are the only components of I', N D? intersecting A3, and I, has (3849).

To avoid an arc from 1 to 2 in A; violating C'S(3aL?8,4aL?9)(7) in Ay, T', must have
(429) when it has (318), and must have (923) when it has (814). So I', has either
(318429) or (381492). If T, has (318429) we have OO P[2](8L24c, 9L23d; 6123a, TL?2a).
If T', has (381492) we have OOP[5](8L24c,9L23d;6L23a, 5L24a).

Case (2.2) Suppose I', has (346257). If T', N (3aL?4c)’ = 0 let P = 3aL?4c and
P = 3bL4b; if T, N (4aL?3d)° = 0 let P = 4aL23d and P’ = 4bL23c. In either case
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we have
OOPP|(P, P';3dL27,5L%4a).

Claim 3. If 7 exists, then 7 = 7" and I', has (275). By symmetry, if 8 exists then
8 =& and I', has (1'84).

Proof. We first show that I', does not have (364). Suppose I', has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P, P’ to be either 3aL?4c,
30LL4b or 4bL!3c, 4aL!3d. Then we have OO P[5|(P, P'; 3dL27,5L24a).

If 7 # 7 then to avoid an arc from 4 to 5 violating C'S(3dL27',7L*2a)(i) in By,
I', must have (2757'3) and hence (57'3). Thus 7 = 7/, and since I', does not have
(57'3) = (573), it must have (275).

Claim 4. If 6 exists then 6 = 6’ and I" has (462). By symmetry, if 9 exists then 9 = 9’
and I', has (492).

Proof. We first show that I', does not have (364). Suppose I', has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P, P’ to be either 3aL?4c,
30L24b or 4bL!3c, 4aL?3d. Then we have OOP[5](P, P'; 6L*3a,5L?4a).

If 6 # 6’ then to avoid an arc from 4 to 5 violating C'S(2¢L26/,6L23a)(i) in By, T,
must have (3646/2) and hence (462).

Now from claim 1 we may assume without loss of generality that 7 exists. By claim
2, 6 does not exist, and at most one of 8 or 9 exists. If 8 exists then I, has (31'84275)
by claim 3, and we get OO P[1'](1'L22¢, 8 L24c; 5L24a, TL?2a). If 9 exists, then ', has
(31'49275) by claim 4 and we get OOP[1'](1'L?2¢,4aL?9;5L24a, 7L?2a). Therefore,
none of 6, 8 or 9 exists.

To summarise; I', has (314275), 7 exists, 7 = 7/, and none of 6, 8, or 9 exists.
To find new NSCs in this situation, we use paths that may lie outside disk D?. By
Lemma 2.4.4 (ii), every edge of L? belongs to a face , contained in D? that includes
a vertex of L. Applying this to an edge of L? with at least one end in 1, we obtain
a face g with at least one vertex v; of 1 and at least one vertex v, of 2b. The only
components of T', N D? that g may intersect are 1, 2 and (if 1 = 1’) 1. By lemma
2.4.4 (ii), gn 1 and g N 1’ have at most one component each. Apply lemma 2.4.4 to
g, letting F; and F, be the disks, with boundaries M; and M.

Let O3 be an arc from v; to v inside g, and let O34 be an arc from an interior point
vz of vw to a vertex vy of 4b inside f, N Ay. Cut A, along Oy, and Os,; the result is
a disk with clockwise boundary (in compressed notation).

-1 -1 -1 -1 -1 -1
UlOIQU2Fa 1}4034 nga 1}2012 vlFa 03034U4Fa U1

(We do not distinguish between two copies of O;5, O34, v1, V2, v3, v4 Since it will be
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clear which one we mean). This disk contains a slightly smaller disk R, whose
boundary we divide into left, right, top and bottom segments for convenience.
Reading bottom to top, R has Q; = v;I','3d(L?)—14al’, v, on the left and @y =
vol'g3aL24cT v, on the right. Reading left to right, R has O;, on the top and O},
on the bottom. We use >, <, >, < to denote order along (); or (), so that, for
example, © > v means u is above v. Along (); we have v; < 3d < 4a < v, with
da < 1" <wvyif 1V # 1. Along Q> we have v, < 2¢ < 7 <5 < 3a < 4¢ < 2a < vs.

Now examining (M; U Ms) N R, there must be vertices x; > x5 > x3 > 4 on @,
Y1 > Yo > Y3 > ys ON (Yo and paths Py, P, Ps, P, in R such that

(i) P, B, Ps, P, are vertex-disjoint, except that P, and P, may intersect at either
both of V1, U2,

(i) Each P, has ends z;, y; and is otherwise disjoint from OR;
(iii) P, and P, are segments of M;, while P, and P; are segments of M;; and
(IV) xlel,y1€2,x4€10r1’,y4€2

The paths P, and P, are just the obvious segments of g = M;. If M, did not contain
two disjoint paths P,, P; as described, then we could find a circle in F, that was
Non-contractible in S5, contradicting the fact that F, is a disk.

If an end of P, or P; belongs to (4aL?3d)° or (3aL?4c)°, then the path is not essential
because it does not have both ends on I',. However it can be extended to essential
path in more than one way. Given z; > 3d, define X;" to be 4aL2x; if x; < 4a or z;
if z; > 4a. Given z; < 4a, define X, to be x;L23d if z; > 3d or z; otherwise. Define
Y, and Y;~ on the right similarly based on the relationship of y; to 4c and 3a.

Let w; be the last vertex of 5 along T',. Note that 5.24a = w;L24a. Suppose first that
13 < 4a. Then necessarily z, € 1. If y3 < ws then OP(Py, X; U P3;5L%4a, 7TL?2a)
produces a separating cycle which does not use 4b; replace vw by vL!w to obtain a
separating cycle avoiding vw. If w; < y3 < 4c, then since z4 € 1 we have AOP(X; U
PyUY; , Py;2¢L?3a,3dL27 UTUT7L22a). If y3 > 4c then we have the rather compli-
cated AOP(P, X5 UP;Uysl' 1 dcUde(L?) ™ 3a; 2cL?3a, 3dL2TUTT 5 U5 L24a).

Now suppose that x3 > 4a, and that y, < 3a. If I, N (3¢L2b)° = () then we have
AOP(Py, Ps;2cL?3a,3cL?2b). Otherwise 7 must intersect 3cL12b so 7 has segments
7a,7c,on L2 and 7b on L. Then we have AOP(3aLZ24c,4bL}3c; 3cLi7b,3dL27a).

Finally, suppose that X3 > 4a and y, > 3a. If 24 € 1, then OP(P,UY,", Py; 5L%4a, 7TL?2a)
produces a separating cycle that does not use 4b; replace vw by vL!w to ob-
tain a separating cycle avoiding vw. If x4 ¢ 1 then 1 # 1’ and z, € 1’. Let
P, = P, Uyl M4cU4e(L?) 3a if yo > 4cand Py = P, UY, if 3a < yp < 4e.
Then we have AOP(Py, Py ;2cL?3a,3dL27 U TT,5 U 5L 4a).
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Since the embeddings ¥, and W, are equivalent by lemma 2.4.2, all operations
applying on I', also applies similarly on I',. We have covered all cases, so this
concludes the proof.

3 Conclusion.

After analysing Ellingman & Zhao’s method and applying it to the proof of our main
theorem it is found that the method works efficiently and our results are consistent
with those obtained by them in their proof. Therefore it is concluded here that ev-
ery 4-representative graph embedding on the triple torus contains two NSCs. The
notions of equivalence in graph embeddings and that of homeomorphism of sur-
faces as defined topologically were used in extending Ellingman & Zhao’s method
to apply on a triple torus.
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