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ABSTRACT

We consider Ellingman’s and Zhao’s method of proving that every 4 representative

graph embedding on the double torus contains a Non-Contractible Separating Cy-

cle (NSC). They proved this main result by considering critical embeddings; which

are embeddings that are very close to having NSCs. We adopt the method in prov-

ing an extension of the same theorem to a surface of one genus higher; the triple

torus. The method works efficiently in proving our main result that every 4 rep-

resentative embedding on the triple torus contains two NSCs which separates the

triple torus into 3 connected components, namely punctured tori, two of them

with one boundary circle and one with two boundary circles. Our results are ob-

tained by employing equivalence of embeddings and homeomorphism of surfaces

to Ellingman and Zhao’s method.
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CHAPTER 1

INTRODUCTION

This chapter presents terminologies and some notations that will be used in subse-

quent chapters and sections of the thesis. We first present terminologies on graphs,

surfaces, and embeddings of graphs on surfaces in the background. We also present

objectives of the study, problem statement and significance of the study in this

chapter.

1.1 Background

1.1.1 Graphs

A graph G is a pair of sets, V (G) and E(G), where V (G) is nonempty and E(G)

is a set of 2-element subsets of V (G). A directed graph G is an ordered pair G =

(V (G), A(G)) consisting of a set V = V (G) of vertices and a set A = A(G) of arcs,

together with an incidence function ψG that associates with each arc of G an or-

dered pair of vertices ofG. The number of vertices, n = |V (G)| , is the order of the graph

G . A walk in the graphG = (V,E) is a finite sequence of the form vi0 , ej1 , vi1 , ej2 , . . . , ejk , vik ,

which consists of alternating vertices and edges of G.
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The walk starts at a vertex. A walk is open if vi0 ̸= vik . We refer the reader to [11,

4] for further details.

The graph G is disconnected if it is the disjoint union of two other graphs and

connected otherwise. A connected graph is said to be k-vertex connected if it has

more than k vertices and remains connected whenever fewer than k vertices are

removed. The vertex connectivity or just connectivity of a graph G is the largest k

for which the graph is k-vertex-connected, we refer to [4].

Two edges with a common end are said to be adjacent. An isomorphism of graphs

G and H is a 1-1 mapping ψ of V (G) onto V (H) such that adjacent pairs of vertices

of G are mapped to adjacent vertices in H, and nonadjacent pairs of vertices have

nonadjacent images. Two graphs G and H are said to be isomorphic if there is

an isomorphism between G and H. If G ∼= H then G and H are isomorphic, see

[11].

A graph is planar if it can be drawn in the plane in such a way that no edges

intersect, except of course at a common end vertex. In other words planar graphs

are embeddable on the plane. While non planar graphs cannot be embedded on the

plane, they can be embeddable on surfaces other than the plane, see [11].

1.1.2 Surfaces

Graphs can be studied on the sphere (plane), or on other surfaces. A surface is

a compact two-dimensional manifold, possibly with boundary. Equivalently, a sur-

face is a compact topological space that is Hausdorff (any two distinct points have
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disjoint neighbourhoods) and such that every point has a neighbourhood homeo-

morphic to a plane or a closed half plane. If each point of a surface has a neighbour-

hood homeomorphic to the plane, such a surface is closed, otherwise it is called a

punctured surface or a surface with boundary, see [11].

If Σ is a punctured surface, then a point p on the surface whose neighbourhoods

are homeomorphic to the upper half plane is said to be a boundary point. The

union of boundary points of Σ is a collection of circles. These circles are bound-

ary components of Σ. The genus of a connected, orientable surface is an integer

representing the maximum number of cuttings along non-intersecting closed sim-

ple curves without rendering the resultant manifold disconnected, we refer to [6,

4].

Examples of surfaces include sphere, cylinder, disk, torus, double torus, Mobius

strip, Klein bottle and the projective plane among others. Some surfaces are shown

in figure 1.1.
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(a) Sphere (b) Disk (c) Torus

(d) Mobius strip
(e) Klein bottle

(f) Double torus (top),
Triple torus (bottom)

Figure 1.1: Some examples of surfaces, see [4].

A surface is non-orientable if some subset of it (with induced topology) is homeo-

morphic to the Mobius strip, otherwise it is orientable [6]. Table 1.1 shows a brief

classification of common surfaces.

Table 1.1: Classification of surfaces, see [4].

Surface Orientable? Genus No. of boundary components
Sphere yes 0 0

Disk yes 0 1
Torus yes 1 0

Double Torus yes 2 0
Triple Torus yes 3 0
Mobius strip no 1 0
Klein bottle no 2 0

Given two topological surfaces Σa and Σb, the map h : Σa → Σb is a homeomorphism

if h is bijective and smooth (both h and its inverse are smooth). For any two closed

connected surfaces Σa and Σb, then such surfaces are homeomorphic if and only if

4



they are both orientable or both non-orientable and they have the same genus. This

implies that every surface is homeomorphic to itself, see [4].

A path on a surface Σ is a continuous map P : [0, 1] → Σ. Its two endpoints are

P (0) and P (1). A loop is a path whose two end points are equal. A closed curve on

Σ is a continuous map from the unit circle S1 to Σ, also called a cycle, we refer to

[4].

1.1.3 Graphs on Surfaces

There are two definitions of graph embeddings, one is topological and the other

combinatorial. In the topological sense, let G be a graph and Σ a surface. Then

the embedding of G onto Σ can be viewed as a continuous map Ψ : G → Σ, see

[4].

Combinatorically, an embedding Ψ of a graph G on a surface Σ is a crossing free

drawing of G on Σ. It maps the vertices of G to distinct points of Σ and its edges

to paths of Σ whose endpoints are images of their incident vertices. The face of

an embedding Ψ is a connected component of the complement of the image of Ψ

as a map. A cellularly embedded graph G = (V (G), E(G)) ⊂ Σ is a graph drawn

in a surface Σ such that its edges only intersect at their ends and each connected

component of Σ\G is homeomorphic to a disk, we refer to [6].

The connected components of Σ\G when viewed as subsets of Σ, are called faces of

G. Two embeddings Ψa : G → Σa and Ψb : G → Σb are strictly equivalent if there

is a homeomorphism h : Σa → Σb such that Ψa = h ◦Ψb. For a cellular embedding,
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two cellular embeddings of a graph G are equivalent if and only if their faces have

same boundaries, see [13].

Σ-facial walks (or simply Σ-faces) are closed walks in the graph which correspond

to traversals of face boundaries of the topological embedding related to Σ. In

that sense, two embeddings are equivalent if they have the same facial walks. Let

F(Σ, G) be the set of Σ-facial walks. The number χ(Σ) = |V (G)|−|E(G)|+|F(Σ, G)|

is called the Euler characteristic of the embedding ofG onto Σ, we refer to [9].

A circle in a surface is a simple closed curve and an arc is a simple non-closed

curve including its end points. There are 3 types of such cycles; contractible, non-

contractible and surface separating. A cycle on a surface is contractible if it can

be continuously deformed to a point without leaving the surface, otherwise it is

non-contractible. It is separating if cutting the surface along such a cycle splits

the surface into two connected components, otherwise it is non-separating, see

[4].

Two cycles on a surface are homotopic if there is a continuous deformation of one

onto the other, that is, if there is a continuous function from the cylinder S1 × [0, 1]

to Σ such that each boundary of the cylinder is mapped to one of the loops. In that

sense, a cycle is contractible if it is homotopic to a constant loop (one whose image

is a single point), see [2].

Figure 1.2 shows such 3 types of cycles; contractible (right), non-contractible and

separating (center) and non-separating (left).
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Figure 1.2: The three types of cycles on a double torus.

Suppose that C is a surface non-separating cycle of a Σ-embedded graph G. If C is

Σ-two-sided, let Ḡ be the graph obtained from G by replacing C with two copies of

C such that all edges on the left side of C are incident with one copy of C and all

edges on the right side of C are incident with the other copy of C. We say that Ḡ is

obtained from G by cutting (or Σ-cutting) along the cycle C, we refer to [11].

Representativity of an embedding, or face width of a graph embedding is the small-

est number of points in which any non-contractible closed curve on a surface in-

tersects the graph. Let G be a graph, Σ be a surface, and Ψ : G → Σ be an

embedding of G in Σ. Representativity of an embedding can also be defined as a

set ρ(Ψ) = min{|Γ ∩ G| : Γ is a Non-contractible simple closed curve on Σ}. An

embedding is critical if it is very close to having and NSC, see [13, 5].

A single point is not considered to be an arc. The interior Qo of an arc Q consists of

an arc and its end points deleted. If a graph is embedded in a surface, each cycle

of the graph is embedded as a circle, and each nontrivial (not a single vertex) path

as an arc. A section of an arc or a circle on a surface is a subarc or single point

contained in the arc or circle, we refer to [5].
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T is used to denote the torus (a sphere with one handle). A graph G is toroidal

if G embeds in T . Let Ψ be an embedding of G = G(Ψ) in T . The closure of

each connected component of T\G(Ψ) is called a face of Ψ (closed faces are mostly

preferred to open ones ). The face set of an embedding Ψ in T is denoted by F (Ψ).

If the graph is 2-connected and ρ(Ψ) ⩾ 2 then each face f is bounded by a cycle,

called a facial cycle and is denoted by ∂f . ∂X denotes the boundary of a set X ⊂ T .

Two vertices x and y are cofacial by a face f if x, y ∈ ∂f . Embeddings with ρ(Ψ) ⩾ 4

have all faces bounded by cycles in graphs, see [13].

If D is a closed disk of T with boundary contained in G, then ∂D (the boundary of

D) is a cycle of G. Let f ∈ F (Ψ) be a face of Ψ. The symmetric differences of ∂f and

all the facial cycles incident to f is a union of cycles of G, and because ρ(Ψ) ⩾ 4,

one of these cycles bounds a disk containing f together with all the faces incident

to f . Such disk is named Df which is also called the second disk of f . It was noted

that the second disk Df consists of the face f , all faces incident to f , and all faces

that are surrounded by f , we refer to [10].

A segment of a path or a cycle in a graph is a subpath, which may consist of just a

single vertex. If a, b are sections of an oriented arc or oriented circle Q then aQb

denotes the part of Q from the last point of a to the first point of b, inclusive. Q−1

denotes Q traversed in the opposite direction. The number of components of a set

S on a surface Σ is denoted ∥ S ∥. For convinience, all topological sets are dealt

with as closed sets, that is they include their boundaries. Contractible circles on

T have natural clockwise orientation and non-contractible circles must be given an
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orientation, see [5].

1.2 Motivation

Several authors have written on cycles of graphs embedded on surfaces. Erickson

wrote on an algorithm used to compute shortest essential cycle of graphs embedded

on orientable combinatorial surfaces, see [7]. Ellingman N.& Zha. X, see [5], wrote

on existence of NSCs in graph embeddings on surfaces. They proved that every

4-representative graph embedded on a double torus contains a NSC.

In this thesis, we wish to explore the existence of Non-contractible separating cy-

cles in 4-representative graphs embedded on a triple torus. We seek to prove that

every 4-representative graph embedded on a triple torus has two NSCs which to-

gether splits the surface into 3 connected components. Zha proved that every 6-

representative embedding on a suitable orientable surface has an NSC, see [13].

We choose to work with 4-representative graph embeddings because it is possible

to raise a 4-representative embedding to 6-representative by performing a series of

augmentations. After raising the representativity from 4 to 6, at that point we are

sure that a NSC exists, see [5].

We will consider Ellingma’s and Zhao’s method of proving that every 4-representative

graph embedded on the double torus has NSC. By using equivalence of embeddings

and homeomorphism of surfaces we extend their method to embeddings on a triple

torus to prove our main theorem.
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1.3 Statement of the problem

Graphs on surfaces is one of the interesting and emerging fields under graph theory.

In recent decades, it has sparked research with many studies focusing on cycles

of embedded graphs. Many authors have studied existence of Non Contractible

Separating cycles of graphs embedded on suitable surfaces, which are defined to be

those with genus at least 2.

When a graph is embedded on a surface, many questions may arise including the

existence of cycles on the embedding and the nature of such cycles. For example,

Ren studied cycle bases of embedded graphs. He argued that in graph embedding

theory, a branch of topological graph theory, cycle operations have particular uses,

see [12].

Some authors including Erickson & Hubard have written on finding shortest cycles

of embedded graphs. These are cycles with minimum face widths of all other cycles

of such embedded graphs. Under this adventure, the problem of finding shortest

paths in non embedded graphs can be reflected but with a minor difference that

such paths will be closed arcs on surfaces, see [7] and [8]

The field of manifolds which tries to perform calculus on abstract surfaces can also

be well understood by studying cycles of embedded graphs. The concept of triangu-

lation of surfaces is also well explained by studying cycles since triangulations are

just subsets of 3-representative embeddings, see [5].
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Now coming to non-contractible separating cycles on embedded graphs, authors

have studied them on embedded graphs with the help of representativity of embed-

dings. Ellingman studied NSCs of graphs embedded on a torus, the suitable surface

of genus 2. They proved that every 4- representative embedding on the double

torus contains an NSC, see [5]. However they did not suggest a possible extension

of their theorem to a surface of one genus higher, the triple torus. We find it an

interesting adventure to study whether the line of argument in their proof could

apply to a triple torus.

1.4 Research objectives

1.4.1 Main objective

The main objective of this study is to prove that every 4 representative graph em-

bedding on the triple torus contains two non contractible separating cycles which

separates the triple torus into 3 connected components.

1.4.2 Specific objectives

Specifically, the objectives of the study are;

(i) To analyse Ellingman’s and Zhao’s method of proving that every 4 represen-

tative embedding on the double torus contains a non-contractible separating

cycle which separates the double torus into 2 connected components.

(ii) To apply Ellingman’s and Zhao’s method in proving that every 4 representative

embedding on the triple torus contains 2 non-contractible separating cycles

11



which separates the surface into 3 connected components

1.5 Significance of the study

The study of graphs on surfaces is of great significance in the field of graph theory. It

gives a good link between the field of topology and that of graph theory, giving good

insight into topological graph theory. On the other hand, it serves as a connection

between the fields of combinatorics and graph theory which in turn gives an insight

into Combinatorial graph theory. This makes it possible for both experts of topology

and algebra to come together in understanding graph theory.

In topological graph theory, cycles of embedded graphs are of great interest. An un-

derstanding of cycles of graphs shall lead to an understanding of cycles on surfaces.

This is significant since graph embeddings are topologically understood as maps

into surfaces. Cycles of embedded graphs help in understanding representativity of

embeddings since they create faces on surfaces and such faces play a pivotal role in

defining reperesentativity of embeddings.

Studying graph embeddings is crucial and has some applications in the real world.

The goals of graph embedding, such as minimizing edge crossings align very well

with the objectives of mesh untangling. Meshes are a variety of graphs used to

represent surfaces with a wide number of applications, particularly in simulation

and modelling.

Non Contractibe separating cycles are the most interesting cycles of embedded

graphs since they cannot be reduced to a single point on the surface and also

12



because they separate surfaces leading to more interesting results. This study is

significant since proving existence of NSCs in embeddings on the triple torus can

lay a good foundation to the study of cycles of graphs embedded on surfaces of

higher genus and on some other higher dimensional manifolds.

1.6 Limitations of the study

In literature most authors wrote on conditions for existence of NSCs in embedded

graphs. Zha proved that every 6-representative embedding on a suitable orientable

surface has an NSC, see [13]. We build our proof on this result by perfoming a

series of augmentations on our 4-representative embeddings in order to raise the

representativity to 6 at which point an NSC exists. These series of augmentations

may tamper with the embedding if not well executed.

1.7 Organisation of the thesis

In chapter 2 we give a review of literature which focuses on conditions for exis-

tence of NSCs in graph embeddings and those that have proven existence of NSCs

in graph embeddings under such conditions. Next in chapter 3 we lay technical def-

initions of essential arcs, punctured tori and triple torus. These will help us look at

lemmas that will be used in proving our main theorem that every 4-representative

embedding on the tripe torus contains two NSCs. Non-contractible separating cy-

cles and critical embeddings are looked at in chapter 4. Finally, in chapter 5 we give

conclusion and a brief discussion of the findings.
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It is found that Ellingman & Zhao’s method of proving that every 4-representative

embedding on the double tori contains an NSC works efficiently in proving existence

of NSCs in 4-representative graph embeddings on the triple tori.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review some literature on conditions for existence of NSCs in

graph embeddings and those that have proven existence of NSCs in graph embed-

dings under such conditions.

Some authors have written on graph embeddings focusing on existence of NSCs of

embedded graphs on surfaces. They have explored conditions for existence of NSCs

of embedded graphs and some have proven existence of NSCs in graph embeddings

under such conditions. Most of these conditions involve representativity or face

width of graph embeddings. The representativity of an embedding Ψ is denoted

ρ(Ψ) and Ψ is k-representative if ρ(Ψ) ≥ k.

Ellingman N. & Zha X in [5] conjectured that if a graph G is embedded on a

surface of genus (orientable or non orientable) at least 2, then it may have a Non

contractible separating cycle (NSC). According to this conjecture, a triple torus falls

within such surfaces. Since this condition is not sufficient and cannot guarantee

existence of NSCs, they argued that sufficient conditions for existence of an NSC in

embeddings are of interest.
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They defined a suitable surface as one of genus (orientable or non orientable) at

least 2. This implies that a triple torus is a suitable surface. Barnette (1980) conjec-

tured that every triangulation in a suitable orientable surface has an NSC. Ellingman

N. & Zha X in [5], further proposed that any triangulation of the double torus whose

shortest Non-contractible cycle with length at least 4 has a Non-contractible separat-

ing cycle. This was a corollary of their proven theorem that every 4-representative

embedding on the double torus contains a Non-contractible separating cycle.

Zha X in [15] conjectured more generally that every 3-representative embedding

in a suitable surface, (orientable or non-orientable) has an NSC. Ellingman in [5]

argued that representativity condition would be best possible here as some authors

have given examples of embeddings with representativity 2 and no NSC.

Robertson N. & Thomas R in [14], proved that every 3-representative embedding

in the Klein bottle has an NSC. Vitray R. P in [3], further proved that every 11-

representative embedding in a suitable surface has an NSC. Zha in [13] reduced

the representativity condition to 6-representative for orientable surfaces and 5-

representative for non orientable ones. Their orientable result originally required

a 7-representative embedding, but it was improved using a suggestion of Vitray R.

P, and the result for 6-representative orientable embeddings also appear in Brunet,

see [3] and [1].

Still on existence of NSCs in graph embeddings, Mohar. B in [9], proposed that if G

is a 3-connected graph embedded with face width at least 3, then all Σ-facial walks
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are induced NSCs. Brunet R. proved that a graph embedding of representativity

w in a suitable orientable surface contains ⌊w−9
8
⌋ disjoint and pairwise homotopic

NSCs. Mohar B. & Thomassen C in [11], conjectured that given a triangulation of a

surface of genus g ⩾ 2 and a number h, 1 ⩽ h ⩽ g− 1 there must be an NSC Γ such

that the two surfaces separated by Γ have genus h and g − h respectively. Mohar B.

conjectured that the same result holds for any 3-representative embedding, see [1]

and [11].

Vitray R. P in [3], conjectured that an embedded graph in an orientable surface with

face-width at least 3 will contain a non-trivial surface-separating cycle. From this

conjecture it can be easily seen that a cycle C in an embedded graph with facewidth

at least 3 is separating if C may be spanned by a collection of facial cycles.

Ellingman N. & Zha X in [5], tackled the simplest suitable surface, the double torus.

They proved that every 4-representative graph embedding in the double torus has

an NSC which separates the surface into 2 connected components. This improved

on the best previous condition (ρ ≥ 6) but does not achieve the goal of Zha’s con-

jecture (ρ ≥ 3).

In this work, we consider exploring existence of non-contractible separating cycles

in critical embeddings on the triple torus. We wish to prove existence of NSCs in

4-representative graphs embedded on the triple torus and we consider the triple

torus to be the one in figure 2.1.
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Figure 2.1: The triple torus.
Source: Radicliffe.
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CHAPTER 3

ESSENTIAL ARCS, PUNCTURED TORI AND TRIPLE TORUS

This chapter presents some technical definitions on essential arcs, punctured tori

and triple torus. We also state and prove some lemmas which will be used in the

proof of our main theorem.

3.1 Essential arcs and punctured tori

The following lemma shows how two disjoint Non-Contractible circles on a torus

splits the surface into 2 cylinders, we refer the reader to [5].

Lemma 3.1.1

(i) Two disjoint non-contractible circles in the torus are homotopic (up to orien-

tation) and together they separate the torus into two cylinders.

(ii) Two non-contractible circles on the torus are disjoint (under homotopy) if

and only if they are homotopic (up to orientation).

Figure 3.1 summarises the description above where one non-contractible separat-

ing cycle on a torus cuts the torus into a cylinder.
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When two disjoint non-contractible separating cycles are used, the torus will be

separated into two cylinders.

Figure 3.1: Formation of a cylinder from a torus.
Source: Radicliffe.

Suppose Σ0 is a surface with one boundary circle Γ. Let Σ be a surface without

boundary obtained by pasting a disk D along Γ. Suppose P is an arc in Σ0 joining

two distinct points of Γ in Σ0 with P 0 ∩ Γ = ∅. The endpoints of P divide Γ into

two subarcs Γ1 and Γ2. In that case, we have two circles P ∪ Γ1, P ∪ Γ2 which

are homotopic. If these two circles are non-contractible then P will be called an

essential arc, we refer to [5]. Now let Σ0 = T0 and Σ = T be tori. Then T0 is a

punctured torus. A punctured torus with one boundary circle Γ is denoted T 1
0 and

a punctured torus with two boundary circles Γa, Γb is denoted T 2
0 .

3.2 The Cylinder-Strip partitions

Let P and P ′ be parallel disjoint essential arcs on a punctured torus. Together they

separate the punctured torus into a cylinder and a strip. A cylinder in that case has

two boundary circles and a strip has one. This partition is denoted CS(P, P ′), See

[5].
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Let Σ2
0 be a surface with two boundary circles Γa and Γb and Σ2 be a surface without

boundary obtained by pasting disks Da and Db along Γa and Γb respectively. Sup-

pose Pa is an arc that joins two distinct points of Γa in Σ2
0 with P o

a ∩Γa = ∅. Similarly,

suppose Pb is an arc that joins two distinct points of Γb in Σ2
0 with P o

b ∩ Γb = ∅. The

endpoints of Pa divide Γa into two subarcs Γ1
a and Γ2

a, and the two circles Pa ∪ Γ1
a,

Pa ∪ Γ2
a are homotopic in Σ2. Similarly, the endpoints of Pb divide Γb into subarcs

Γ1
b , Γ

2
b and the two circles Pb ∪ Γ1

b , Pb ∪ Γ2
b are homotopic in Σ2. If both these circles

are Non-contractible then both Pa and Pb will be called essential arcs.

Now assume that Σ2
0 = T 2

0 is a punctured torus with two boundary circles and

Σ2 = T a torus which is not punctured. Suppose that Pa and P ′
a are disjoint essential

arcs (so that their four endpoints are all disjoint). We say Pa and P ′
a are parallel

if the end points of Pa are not separated on Γa by the end points of P ′
a. Similarly,

we say Pb and P ′
b are parallel if the endpoints of Pb are not separated on Γb by the

endpoints of P ′
b.

In the above case we may label the four endpoints of the pairs of the arcs in order

along Γa and Γb respectively as xa, ya, x′a, y
′
a with Pa from xa to ya, P ′ from x′a to

y′a. Similarly the four endpoints in order along Γb can be labeled as xb, yb, x′b, y
′
b

with Pb from xb to yb, P ′
b from x′b to y′b. By Lemma 3.1.1 (i), the disjoint homotopic

circles Pa ∪ xaΓaya and P ′
a ∪ x′aΓay

′
a separates T into disjoint cylinders Ca, C

′
a and

the homotopic circles P ∪ xbΓbyb and P ′
b ∪ x′bΓby

′
b separate T into disjoint cylinders

Cb, C
′
b. Let C ′

a be the cylinder containing Do
a. Then C ′

a is further separated by

yaΓax
′
a ∪ y′aΓaxa into Do

a and a disk Sa bounded by Pa ∪ yaΓax
′
a ∪ P ′

a ∪ y′aΓaxa. Sa is
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called a strip with ends yaΓax
′
a and y′aΓaxa. Thus, Γa ∪ Pa ∪ P ′

a separates the torus

T into Ca, Sb and Da, and P ∪ P ′ separates the torus T0 = T\Do
a into Ca and Sa.

Ca, Sa is called the cylinder-strip partition of T0 induced by Pa and P ′
a and is denoted

CS(Pa, P
′
a).

Now let C ′
b be the cylinder containing Do

b . Then C ′
b is further separated by ybΓbx

′
b ∪

y′bΓbxb into Do
b and a disk Sb bounded by Pb∪ ybΓbx

′
b∪P ′

b ∪ y′bΓbxb. Sb is called a strip

with ends ybΓbx
′
b and y′bΓbxb. Thus, Γb∪Pb∪P ′

b separates the torus T into Cb, Sb and

Db, and Pb ∪ P ′
b separates the torus T0 = T\Do

b into Cb and Sa. Cb, Sb is called the

cylinder-strip partition of T0 induced by Pb and P ′
b and is denoted by CS(Pb, P

′
b).

Figure 3.2 gives an illustration of the description above.

Figure 3.2: Construction of cylinder and strip.

The following lemma shows how 3 essential arcs, two of them being parallel, can

be properly placed on the cylinder-strip partition of a punctured torus.

Lemma 3.2.1: The Cylinder-Strip Lemma. Given a punctured torus T 2
0 , with

two boundary circles Γa and Γb, let Pa, P ′
a and Pb, P ′

b be a pair of parallel disjoint
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essential arcs. Let P ′′
a be an essential arc disjoint from Pa and P ′

a and P ′′
b be an

essential arc disjoint from Pb and P ′
b. Then,

(i) Both ends of P ′′
a must lie in the cylinder, Ca or both ends must lie in the strip,Sa

of CaSa(Pa, P
′
a).

(ii) Both ends of P ′′
b must lie in the cylinder, Cb or both ends must lie in the strip,Sb

of CbSb(Pb, P
′
b)

(iii) If both ends of P ′′
a lie in the strip Sa, then they lie at opposite ends.

(iv) If both ends of P ′′
b lie in the strip Sb, then they lie at opposite ends.

Figure 3.3 shows cases where the cylinder-strip lemma is violated, we refer to [5].

Figure 3.3: (a) violates (i) of cylinder strip lemma, (b) violates (iii) of cylinder strip
lemma.

In dealing with essential arcs in a given punctured torus T0, with boundary Γ, Elling-

man N. & Zha X represented Γ as a circle and essential arcs as chords of the circle,

see [5]. Suppose Γ is a single boundary circle of compact surface Σ0. Let D be
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a closed disk in Σ0 and suppose Γ ∩ D = Γ ∩ ∂D consists of a finite number of

components. We say that Γ and D intersect essentially if every arc in D joining two

distinct components of Γ ∩D is essential.

The following lemma shows how many possible components of Γ ∩D can occur in

a punctured torus.

Lemma 3.2.2: Suppose Γa and Γb are boundary circles of a punctured torus T 2
0 ,

and Γa and Γb intersect disks Da and Db essentially, respectively. Let La = ∂Da and

Lb = ∂Db both oriented clockwise. Let Γ1
a,Γ

2
a, ...,Γ

k
a be the components of Γa∩Da =

Γa ∩ La and Γ1
b ,Γ

2
b , ...,Γ

k
b be the components of Γb ∩ Db = Γb ∩ Lb both oriented

clockwise along their respective boundaries where Γi
a = xiLay

i and Γj
b = xjLby

j for

each i and j respectively.

(i) k ≤ 4

(ii) If k = 2 then (y1a, x
1
a, y

2
a, x

2
a) occur in that clockwise order along Γa and (y1b , x

1
b , y

2
b , x

2
b)

occur in that clockwise order along Γb

(iii) If k = 3 then (y1a, x
1
a, y

2
a, x

2
a, y

3
a, x

3
a) occur in that clockwise order along Γa and

(y1b , x
1
b , y

2
b , x

2
b , y

3
b , x

3
b) occur in that clockwise order along Γb

(iv) If k = 4 then (y1a, x
1
a, y

2
a, x

2
a, y

3
a, x

3
a, y

4
a, x

4
a) occur in that clockwise order along Γa

and

(y1b , x
1
b , y

2
b , x

2
b , y

3
b , x

3
b , y

4
b , x

4
b) occur in that clockwise order along Γb

Proof. By expanding Da and or Db slightly if necessary, we may assume that xia ̸= yia
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for all i and similarly that xjb ̸= yjb for all j. If we add a disk Da along Γa, La and Γa

are both contractible and have natural clockwise orientations, which must oppose

each other where they meet. Thus yia is followed on Γa by xia and xia must be

followed by some yia. On the other hand, if we add a disk Db along Γb, Lb and Γb are

both contractible and have natural clockwise orientations, which must oppose each

other where they meet. Thus yjb is followed on Γb by xjb and xjb must be followed by

some yjb .

We first prove (ii), (iii) and (iv) and then prove (i)

(ii) When k = 2 the given orders are the only possible ones.

(iii) Suppose k = 3. There are only two possible clockwise orders along Γa. If

the order is (y1a, x
1
a, y

3
a, x

3
a, y

2
a, x

2
a) then the essential arc y3aLax

1
a has both ends at the

same end of the strip of CaSa(y
1
aLax

2
a, y

2
aLax

2
a) contradicting (iii) of the cylinder-strip

lemma and if the order is (y1b , x
1
b , y

3
b , x

3
b , y

2
b , x

2
b) then the essential arc y3bLbx

1
b has both

ends at the same end of the strip of CbSb(y
1
bLbx

2
b , y

2
bLbx

2
b) contradicting (iv) of the

cylinder-strip lemma.

(iii) By shifting Da slightly we may apply (iii) separately to both collections Γ1
a, Γ

2
a,

Γ3
a and Γ1

a, Γ
3
a, Γ

3
a and get the required order. Also by By shifting Db slightly we

may apply (iii) separately to both collections Γ1
b , Γ

2
b , Γ

3
b and Γ1

b , Γ
3
b , Γ

3
b and get the

required order.

(i) If k ≥ 5, then by shifting the disk Da slightly we may assume that k = 5. By sim-

ilar reasoning to (iv) the clockwise order must be (y1a, x
1
a, y

2
a, x

2
a, y

3
a, x

3
a, y

4
a, x

4
a, y

5
a, x

5
a).

Now the essential arc y4aLax
5
a has one end in the cylinder and the other end in the
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strip of CaSa(y
5
aLax

1
a, y

2
aLax

3
a) contradicting (i) of the cylinder-strip lemma. On the

other hand, by shifting the disk Db slightly we may assume that k = 5. By simi-

lar reasoning to (iv) the clockwise order must be (y1b , x
1
b , y

2
b , x

2
b , y

3
b , x

3
b , y

4
b , x

4
b , y

5
b , x

5
b).

Now the essential arc y4bLbx
5
b has one end in the cylinder and the other end in the

strip of CbSb(y
5
bLbx

1
b , y

2
bLbx

3
b) contradicting (ii) of the cylinder-strip lemma.

3.3 The double and triple tori

Ellingman N. & Zha X, see [5], considered a double torus S2. Suppose we have an

oriented non contractible separating circle Γ of the torus S2. It separates S2 into

two punctured tori A0, B0 which are both closed and include Γ. When convinient,

A0 is completed with disc A⋆ to a torus A and B0 with a disk B⋆ to a torus B. If both

A and B inherit the orientation of S2, Γ will be clockwise in A and anticlockwise in

B. In other words, Γ goes clockwise around A⋆ so A⋆ is to the right of Γ in A, and

A0 is to the left of Γ in both A and S2. Similarly B0 is to the right of Γ, see figure

3.4.

Now we consider a triple torus S3. Suppose we have 2 oriented noncontractible

separating circles Γa, Γb of the triple torus. Together they separate the triple torus

into three punctured tori, A0, B0, C0. A0 contains Γa, B0 contains both Γa and Γb

and C0 contains Γb meaning that both A0, B0 and C0 are closed. When convinient,

we will complete A0 with disk A⋆ to torus A, B0 with disks B⋆
1 and B⋆

2 to torus B

and C0 with disk C⋆ to torus C.
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Figure 3.4: NSC Γ on a double torus

A0 and C0 are punctured tori with one boundary circle each, Γa and Γb respectively.

B0 is a punctured torus with two boundary circles Γa and Γb. We assume that Γa

goes clockwise around A⋆. So A⋆ is to the right of Γa in A and A0 is to the left of Γa

in both A and S3. Γb goes clockwise around C⋆ in C so C⋆ is to the right of Γb in C

and C0 to the left of Γb in both C and S3. Since Γa goes clockwise around A⋆ in A,

it goes anticlockwise in B, meaning B0 is to the left of Γa in that case. Similarly B0

is to the right of Γb, see figure 3.5

We now discuss some of the ways Γa and Γb can pass through given closed disks Da

andDb. Let La = ∂Da and Lb = ∂Db. Suppose Γa∩Da has finitely many components
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Figure 3.5: NSCs Γa and Γb on a triple torus

including but not limited to Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a and Γb∩Db has finitely many components

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b with;

i. Each Γi
a ∩ La has at most 2 components, 1 ≤ i ≤ 4 and Γj

b ∩ Lb has at most 2

components 1 ≤ j ≤ 4

ii. There is an arc P1 in Da with ends on La and P o
1 ⊂ Do

a such that P1 ∩ Γa =

x1, x2, x3, x4 where x1, x2, x3, x4 are in that order along P1. Each xi belongs to

Γi
a and Γ2

a and Γ3
a cross (not just intersect) P1 at x2 and x3 respectively.

Similarly there is an arc P2 in Db with ends on Lb and P o
2 ⊂ Db such that

P2 ∩ Γb = y1, y2, y3, y4 where y1, y2, y3, y4 are in that order along P2. Each yi
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belongs to Γj
b and Γ2

b and Γ3
b cross P2 at y2 and y3 respectively.

Assume that x1P1x2 ⊂ A0 and y1P2y2 ⊂ B0. For each i, let ia denote the first

component of Γi
a ∩ La following Γi

a along Γa and ib the last. And for each j let jd

denote the first component of Γj
b ∩ Lb following Γj

b along Γb and jf the last.

By the fact that Γa is separating and using orientations of A0 and B0 the components

1a, 2b, 3a, 4b, 4a, 3b, 2a, 1b occur in that clockwise order along La (so 2a ̸= 2b, 3a ̸=

3b, but possibly 1a = 1b or 4a = 4b). Similarly by the fact that Γb is separating and

using the orientations of B0 and C0 the components 1d, 2e, 3d, 4e, 4d, 3e, 2d, 1e

occur in that clockwise order along Lb (so 2e ̸= 2d, 3d ̸= 3e but possibly 1d = 1e, or

4e = 4d)

There are six possible cyclic orders in which components Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a can occur

along Γa and six possible cyclic orders in which components Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b can occur

along Γb. In each case they occur in pairs which are equivalent up to reversal of Γa

and Γb respectively. If we know that Γa intersects the (closures of the) components

of Da\Γa essentially, then for some of these orders we can place restrictions on

where additional components of Γa ∩ Da can be. Similarly if we know that Γb

intersects the (closures of the) components of Db\Γb essentially, then for some of

these orders we can place restrictions on where additional components of Γb ∩ Db

can be.
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CHAPTER 4

NON-CONTRACTIBLE SEPARATING CYCLES AND CRITICAL

EMBEDDINGS

This chapter focuses on how new NSCs can be constructed from old ones. We also

discuss a method called augmentation, which raises representativity of embeddings

from 4 to 6 in this chapter and then we define critical embeddings. That will take

us to the proof of our main theorem in the same chapter.

The following lemma shows possible orders of arrangements of segments of Γa∩Da

and Γb ∩Db on a triple torus.

Lemma 4.1: Suppose Γa and Γb are two non-contractible separating circles of S3

with disks Da and Db and components Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a of Γa ∩ Da and components

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b of Γb ∩Db as described above. Suppose further that Γa intersects the

closure of every component of Da\Γa essentially (in A0 or B0 as appropriate) and

that Γb intersects the closure of every component of Db\Γb essentially (in B0 or C0

as appropriate).
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1. If the components occur along Γa in the order (1432) then Γa ∩ (2aLa1b)
o =

Γa ∩ (4aLa3b)
o = ∅ and if the components occur along Γb in the order (1432)

then Γb ∩ (2dLb1e)
o = Γb ∩ (4dLb3e)

o = ∅

2. If the components occur along Γa in the order (1342) then Γa ∩ (2aLa1b)
o =

Γa ∩ (3aLa4b)
o = ∅ and if the components occur along Γb in the order (1342)

then Γb ∩ (2dLb1e)
o = Γb ∩ (3dLb4e)

o = ∅

Proof: Suppose in Case 1 that Γa∩(2aLa1b)
o ̸= ∅. Let Γ5

a (or for short 5) be the com-

ponent of Γ∩(2aLa1b)
o closest to 1b on La. By lemma 3.2.2 (iii), 5 ⊂ (2bΓa1a)

o. But

then 5La1b violates CaSa(1aLa2b, 3aLa4b)(i) (i,e violates Lemma 3.2.1 (i)). Here it

is necessary if Γ1
a = 1a = 1b is a single point. Thus, Γa ∩ (2aLa1b)

o = ∅. Simi-

larly suppose that Γb ∩ (2dLb1e)
o ̸= ∅. Let Γ5

b be the component of Γb ∩ (2dLb1e)
o

closest to 1e on Lb. By lemma 3.2.2 (iii), Γ5
b ⊂ (2eΓb1d)

o. But then 5L1e vio-

lates CbSb(1dLb2e, 3dLb4e)(ii)(i.e violates Lemma 3.2.1 (ii)). Here it is necessary if

Γ1
b = 1d = 1e is a single point. Thus Γb ∩ (2dLb1e)

o = ∅.

Similarly suppose in Case 2 that Γa ∩ (2aLa1b) ̸= ∅. Let Γ5
a be the component of

Γa ∩ (2aLa1b)
o closest to 1b on La. By lemma 3.2.2 (iii), 5 ⊂ (2bΓa1a)

o. But then

5La1b violates CaSa(1aLa2b, 4aLa3b)(i)(i.e violates Lemma 3.2.1 (i)). (Note: We

assume that essential arcs can be shifted slightly if necessary to apply the Cylinder-

Strip Lemma). Here it is necessary if Γ1
a = 1a = 1b is a single point. Thus, Γa ∩

(2aLa1b)
o = ∅. On the other hand suppose that Γb ∩ (2dLb1e)

o ̸= ∅. Let Γ5
b be

the component of Γb ∩ (2dLb1e)
o closest to 1e on Lb. By lemma 3.2.2 (iii), Γ5

b ⊂
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(2eΓb1d)
o. But then 5L1e violates CbSb(1dLb2e, 4dLb3e)(ii)(i.e violates Lemma 3.2.1

(ii)). Here it is necessary if Γ1
b = 1d = 1e is a single point. Thus Γb ∩ (2dLb1e)

o = ∅.

The rest of the proof is similar.

4.1 Construction of Non-Contractible Separating Cir-

cles

Next we discuss a method of constructing new noncontractible separating circles

from old ones on general surfaces in theorem 4.1.1 and Corollary 4.1.2 will show

how this applies to a triple torus.

Theorem 4.1.1: Let Σ be a surface with two oriented noncontractible separating

circles Γa and Γb separating the surface into 3 closed components A0, B0 and C0.

Suppose there are sections Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a of Γa in that order along Γa, and sections

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b of Γb in that order along Γb. Suppose further that there are arcs P12,

P34 in A0, Q23, Q41 in B0, also, Q12, Q34 in B0 and R23, R41 in C0, such that;

(i) Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a are disjoint, so are Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b

(ii) P o
12, P

o
34, Q

o
23, Q

o
41 are disjoint from Γa and Qo

12, Q
o
34, R

o
23, R

o
41 are disjoint from

Γb

(iii) P12 has ends a1, a2; P34 has ends a3, a4; Q23 has ends b2, b3; Q41 has ends b4, b1

where ai, bi are two ends of each Γi
a (not necessarily in order along Γa); Q12

has ends c1, c2; Q34 has ends c3, c4; R23 has ends d2, d3 and R41 has ends d4,

d1; where cj, bj are two ends of each Γj
b (not necessarily in order along Γb).
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(iv) P12 ∪ P34 separates A0 into a component A1 with boundary P12 ∪ a2Γaa3 ∪

P34 ∪ a4Γaa1 (one circle) and a component A2 with boundary (a1Γaa2 ∪ P12) ∪

(a3Γaa4∪P34) (two circles). Q23∪Q41 similarly separates B0 into a component

B1 with boundary Q23∪ b3Γab4∪Q41∪ b1Γab2 (one circle) and a component B2

with boundary (b2Γab3 ∪Q23) ∪ (b4Γab1 ∪Q41) (two circles). In the same way,

Q12∪Q34 separates B0 into a component B3 with boundary Q12∪c2Γbc3∪Q34∪

c4Γbc1 (one circle) and a component B4 with boundary (c1Γbc2∪Q12∪(c3Γbc4∪

Q34) (two circles), while R23 ∪R41 similarly separates C0 into a component C1

with boundary R23 ∪ d3Γbd4 ∪ R41 ∪ d1Γbd2 (one circle) and a component C2

with boundary (d2Γbd3 ∪R23) ∪ (d4Γbd1 ∪R41) (two circles). Then;

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41 and

Γ′′ = Γ1
b ∪ Q12 ∪ Γ2

b ∪ R23 ∪ Γ3
b ∪ Q34 ∪ Γ4

b ∪ R41 are also Non-contractible

separating circles in Σ2, separating A1 ∪ B2 from A2 ∪ B1 and B3 ∪ C2 from

B4 ∪ C1 respectively.

Proof. We observe from the conditions of the theorem that Γ′ separates A1∪B2 from

A2 ∪B1 and that Γ′′ separates B3 ∪C2 from B4 ∪C1. It is enough to show that both

Γ′ and Γ′′ are Non-contractible or equivalently that none of A1∪B2, A2∪B1,B3∪C2

and B4 ∪ C1 is homeomorphic to a disk.

(i) Since A1 has one boundary circle, it is homeomorphic to a disk with handles

and or crosscaps attached. Since B2 has two boundary circles, it is homeo-

morphic to a cylinder with handles and or crosscaps attached. If A1 is just a
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disk and B2 just a cylinder, the way they are attached along the segments of

Γa between Γ2
a and Γ3

a and between Γ4
a and Γ1

a means that the result would

be homeomorphic to a punctured torus. More generally, the result is home-

omorhic to a punctured torus with handles and or crosscaps added, which is

not a disk. Therefore A1 ∪B2 is not a disk.

(ii) Since B1 has one boundary circle, it is homeomorphic to a disk with handles

and or crosscaps attached. Since A2 has two boundary circles, it is homeo-

morphic to a cylinder with handles and or crosscaps attached. If B1 is just a

disk and A2 just a cylinder, the way they are attached along the segments of

Γa between Γ2
a and Γ3

a and between Γ4
a and Γ1

a means that the result would be

homeomorphic to a punctured torus. More generally, the result is homeomor-

phic to a punctured torus with handles and or crosscaps added, which is not

a disk. Therefore A2 ∪B1 is not a disk.

(iii) Since B3 has one boundary circle, it is homeomorphic to a disk with handles

and or crosscaps attached. Since C2 has two boundary circles, it is homeo-

morphic to a cylinder with handles and or crosscaps attached. If B3 is just a

disk and C2 just a cylinder, the way they are attached along the segments of

Γb between Γ2
b and Γ3

b and between Γ4
b and Γ1

b means that the result would be

homeomorphic to a punctured torus. More generally, the result is homeomor-

phic to a punctured torus with handles and or crosscaps added, which is not

a disk. Therefore B3 ∪ C2 is not a disk.
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(iv) Since C1 has one boundary circle, it is homeomorphic to a disk with handles

and or crosscaps attached. Since B4 has two boundary circles, it is homeo-

morphic to a cylinder with handles and or crosscaps attached. If C1 is just a

disk and B4 just a cylinder, the way they are attached along the segments of

Γb between Γ2
b and Γ3

b and between Γ4
b and Γ1

b means that the result would

be homeomorphic to a punctured torus. More generally, the result is home-

omorhic to a punctured torus with handles and or crosscaps added, which is

not a disk. Therefore B4 ∪ C1 is not a disk

Since (i) and (ii) proves that components A1 ∪ B2 and A2 ∪ B1 are not disks,

then

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41

is Non-contractible. Similarly, since (iii) and (iv) proves that components B3 ∪ C2

and B4 ∪ C1 are not disks, then

Γ′′ = Γ1
b ∪Q12 ∪ Γ2

b ∪R23 ∪ Γ3
b ∪Q34 ∪ Γ4

b ∪R41 is also Non-contractible.

We now apply this to the triple torus, with weaker versions of conditions (ii) and

(iv), and stating condition (iv) in a way that is specific to the triple torus.

Corollary 4.1.2. Suppose Γa and Γb are two Non-contractible separating circles in

the triple torus S3, separating S3 into three (closed) punctured tori A0, B0 and C0.

Suppose there are sections Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a of Γa in that order along Γa, and sections

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b of Γb in that order along Γb, arcs P12, P34 in A0; Q23, Q41 in B0 ; Q12,
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Q34 in B0 and R23, R41 in C0 such that;

(i) Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a are disjoint, so are Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b

(ii) P o
12, P

o
34, Q

o
23, Q

o
41 are disjoint from Γa and Qo

12, Q
o
34, R

o
23, R

o
41 are disjoint from

Γb

(iii) P12 has ends a1, a2; P34 has ends a3, a4; Q23 has ends b2, b3 and Q41 has ends

b4, b1 where ai, bi are two ends of each Γi
a (not necessarily in order along Γa)

and Q12 has ends c1, c2, Q34 has ends c3, c4, R23 has ends d2, d3 and R41 has

ends d4, d1 where cj, bj are two ends of each Γj
b (not necessarily in order along

Γb).

(iv) P12, P34 are homotopic with endpoints fixed in A0 to a pair of parallel essential

arcs andQ23, Q41 are homotopic with endpoints fixed in B0 to a pair of parallel

essential arcs. Similarly Q12, Q34 are homotopic with endpoints fixed in B0 to

a pair of parallel essential arcs and R23, R41 are homotopic with endpoints

fixed in C0 to a pair of parallel essential arcs. Then;

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41 and

Γ′′ = Γ1
b∪Q12∪Γ2

b∪R23∪Γ3
b∪Q34∪Γ4

b∪R41 are also Non-contractible separating

circles in S3.

Proof: Conditions (ii) and (iv) mean that by shifting Γa slightly, we can make P12,

P34 and Q23, Q41 into pairs of parallel essential arcs. Similarly, by shifting Γb slightly

we can make Q12, Q34 and R23, R41 into pairs of parallel essential arcs. Then each of
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the (slightly shifted) punctured tori is separated into a cylinder and a strip in each

case. Now applying Theorem 4.1.1 completes the proof.

Sets of arcs P12, P34, Q23, Q41 and Q12, Q34, R23, R41 satisfying Corollary 4.1.2 are

called orthogonal arrangements of parallel arcs, or OP for short. They are are re-

ferred to as OP (P12, P34;Q23, Q41) and OP (Q12, Q34;R23, R41). The arcs P12, P34,

Q23, Q41 are not required to have interiors disjoint from Γa, just from sections Γ1
a,

Γ2
a, Γ

3
a, Γ

4
a. Similarly, the arcs Q12, Q34, R23, R41 are not required to have interiors

disjoint from Γb, but just from sections Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b . The most common case of

this is illustrated in figure 4.1. When forming an OP, the two hatched essential

arcs joined by a hatched segment of Γ may be considered equivalent to the sin-

gle dashed essential arc, as long as the hatched segment of Γa does not intersect

Γ1
a,Γ

2
a,Γ

3
a,Γ

4
a.

Figure 4.1: Equivalent to an essential arc, see [5].

4.2 Critical embeddings

In proving the existence of Non-contractible separating cycles (NSCs), Ellingman

used an approach of examining embeddings which are very close to having an
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NSC.

The following lemma justifies existence of NSCs in critical embeddings with critical

edges.

Lemma 4.2.1 : Let Σ be a suitable surface (one with genus at least 2), and k ≥ 3

(the representativity of an embedding on such a surface). Suppose there is a k-

representative embedding in Σ that does not have an NSC. Then there exists a

k-representative embedding Ψ of a simple 2-connected graph in Σ that does not

have an NSC, with a face f containing non-adjacent vertices x, y so that when the

edge xy is inserted across the face f , Ψ+ = Ψ ∪ xy has an NSC. We call Ψ a critical

embedding with critical edge xy, see [5].

Proof: Let Ψ0 be a k-representative embedding of a graph G0 in Σ with no NSC.

Since k ≥ 3 and since multiple edges bounding a disk can be reduced to a single

edge without affecting existence of an NSC, we may assume that G0 is simple.

Moreover, by reducing it to essential 2-component, we may assume that G0 is 2-

connected.

Ellingman N. & Zha X, see[5], defined an augmentation of an embedding to be

either;

(i) The addition of an edge across a face between two nonadjacent vertices on

that face or,

(ii) If every face is a triangle as in triangulation (bounded by a 3-cycle), then in
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some face (uvw) subdivide one edge uv with a new vertex x and then add the

edge ux

Neither (i) nor (ii) decreases the representativity. In a sequence of augmentations,

any augmentation following one of type (ii) must be of type (i).

If we apply a sequence of augmentations to Ψ0, each embedding is k-representative

with a graph that is simple and 2-connected. Moreover, by applying a sequence

of augmentations to Ψ0 we can increase its representativity arbitrarily. First, we

complete Ψ0 to a triangulation using type (i) augmentations. It is well known that

in a triangulation, representativity equals the length of a shortest noncontractible

cycle. Given an edge e = vw on a shortest noncontractible cycle, belonging to

two triangles (uvw) and (twv), we can apply four augmentations of type (ii), (i),

(ii), (i) with the effect of deleting vw, adding two new vertices x1, x2, and adding

paths vx1w, vx2w, ux1x2t. This destroys all shortest noncontractible cycles through

e without creating any new shortest noncontractible cycles. After destroying all

shortest noncontractible cycles in this way, the representativity must increase by at

least one, then we can repeat the process. The essence of repeating the process is

to raise representativity to 6 at which point Zha & Zhao proved that an NSC exists,

see [13].

Therefore, it is possible to apply a sequence of augmentations to Ψ0 to raise the rep-

resentativity to at least 6, at which point an NSC exist. Let Ψ be an embedding in

the sequence before the first augmentation that creates an NSC. Type (ii) augmen-
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tations cannot create an NSC if one does not already exist. So the augmentations is

of type (i) and the result follows.

4.3 Main theorem

In this section, it is shown that every embedding on the triple torus with repre-

sentativity at least 4 contains two NSCs. We begin with a standard result on 4-

representative graphs.

Definition 4.3.1: Equivalence of embeddings: Two embeddings Ψa : G −→ Σ

and Ψb : G −→ Σ are equivalent, denoted by Ψa ⋍ Ψb if there exists a graph

automorphism α : G −→ G and an orientation preserving surface homeomorphism

η : Σ −→ Σ for which the map compositions Ψa ◦ η : G −→ Σ and α ◦Ψb : G −→ Σ

are identical, see [10].

The following lemma shows how two, 4-representative graph embeddings on the

triple torus are equivalent.

Lemma 4.3.2: Let Ψa : G −→ S3 and Ψb : G −→ S3 be two embeddings of a graph

G into the triple torus S3. Suppose there exists an automorphism α : G −→ G

between G and itself. Then the embeddings Ψa : G −→ S3 and Ψb : G −→ S3 are

equivalent.

Proof: First we show that there is an orientation preserving surface homeomor-

phism η : S3 −→ S3. [Bernadi. O (2011)] argued that a map is a connected graph

embedded on a surface, considered up to orientation preserving homeomorphism.
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This is obvious since a triple torus is always homeomorphic to itself. For easy iden-

tification of the preservation of the orientation, we consider the case where the

homeomorphism η is an identity map.

Finally we show that the map compositions Ψa ◦ η : G −→ S3 and α ◦Ψb : G −→ S3

are identical. Let e be an arc with end points v, w on S3, then η(e) = e since η is

identity map. Since Ψa is an embedding, Ψa((u, v)) = e. Similarly, let e be an edge

of graph G with end points u, v, i.e, edge (u, v). Then since Ψb is an embedding,

Ψb((u, v)) = e where e is an arc on S3. Applying η on e we have η(e) = e since e is

an identity map. Hence, the two embeddings Ψa and Ψb are equivalent.

The lemma below shows the existence of a disk D which contains the union of f

and all faces that share at least one vertex with f , given that f is the face of an

embedding which has representativity at least 3. The subsequent lemma shows

how this applies to 4-representative embeddings on the triple torus.

Lemma 4.3.3: Let f be a face of an embedding Ψ : G → Σ, where Σ is not a 2-

sphere. Let k be an integer such that ρ(Ψ, f) > 2k+ 1 and let Bk(f) be the union of

f and all faces that share at least one vertex with f . Then there is a disk Dk(f) ⊂ Σ

which contains Bk(f) such that ∂Dk(f) ⊆ ∂Bk(f), see [14].

Proof: Any contractible simple closed curve γ ∈ Σ bounds a unique disc since Σ is

not a 2-sphere. Denote this disc by int(γ). Clearly, any disc containing Bk(f) must

contain the disk int(γ) for any simple closed curve γ in Bk(f). Let

Dk = Bk(f) ∪ {int(γ) | γ is a simple closed curve in Bk(f)}.
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Each closed curve γ in Dk is homotopic to some closed curve contained in Bk(f)

since any part of γ in int(γ) can be moved by homotopy to the boundary of int(γ),

which is contained in Bk(f). Dk is simply connected and it is also connected by

construction and ∂Dk ⊆ ∂Bk(f). Since the only simply connected compact surfaces

are the 2-sphere and the closed disk, it suffices to show that Dk is a 2-manifold

with boundary. By construction it follows that Dk is closed. Moreover Dk is a

union of closed faces. Therefore, a singularity can only appear at the vertex of the

embedded graph. But by the following reason a true singularity is excluded. If g

and h are faces in Bk(f) meeting at a vertex x, let γ be a closed curve starting at

a point in int(f) leading to g going through x to h, and returning to f , such that

| z ∈ S1 | γ(z) ∈ Ψ(G) |≤ 2k + 1. Since ρ(f) > 2k + 1, γ bounds a disk in Dk.

Consequently all the faces at x which lie between g and h (one or the other side)

also lie in Dk.

Lemma 4.3.4: Let fa and fb be faces of two 4-representative embeddings Ψa and

Ψb which are equivalent on the triple torus, and let Fa be the union of fa and all

faces that share at least one vertex with fa. Similarly let Fb be the union of fb and

all faces that share at least one vertex with fb.

(i) The face fa is a disk D1
a with boundary cycle L1

a, and there is a disk D2
a ⊃ D1

a

with boundary cycle L2
a, such that F ⊆ D2

a and L2
a = ∂D2

a ⊆ ∂Fa. Similarly,

the face fb is a disk D1
b with boundary cycle L1

b , and there is a disk D2
b ⊃ D1

b

with boundary cycle L2
b , such that F ⊆ D2

b and L2
b = ∂D2

b ⊆ ∂Fb
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(ii) Any path Pa in D2
a with both ends on L2

a must be a segment of L2
a or must

contain a vertex of L1
a and any path Pb in D2

b with both ends on L2
b must be a

segment of L2
b or must contain a vertex of L1

b

Proof.

i (i) is a special case of Lemma 4.3.3.

ii If (ii) fails, there would be a path Pa inD2
a internally disjoint from L2

a joining two

vertices of L2
a and not intersecting L1

a. Labeling the ends a, b of Pa appropriately,

Pa∪bL2
aa would separate (aL2

ab)
o from L1

a. But this contradicts the fact that since

L2
a ⊆ ∂Fa, every point of L2

a has an arc joining it to L1
a that does not intersect

the graph except at its endpoints. Similarly, there would be a path Pb in D2
b

internally disjoint from L2
b joining two vertices of L2

a and not intersecting L1
b .

Labeling the ends d, e of Pb appropriately, Pb ∪ dL2
be would separate (dL2

be)
o

from L1
b . But this contradicts the fact that since L2

b ⊆ ∂Fb, every point of L2
b has

an arc joining it to L1
b that does not intersect the graph except at its endpoints.

We now present the main theorem.

Theorem 4.3.5: Every 4-representative embedding on the triple torus contains two

non-contractible separating cycles which splits the triple torus into 3 connected

components.

Proof: Suppose the theorem is false. By Lemma 4.2.1, there are critical 4-representative

embeddings Ψa and Ψb (of simple 2-connected graphs) with no NSC, while Ψ+
a =
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Ψa ∪ vw and Ψ+
b = Ψb ∪ xy have NSCs. Suppose that vw is added across the face fa

and xy across the face fb. Let D1
a, D

2
a, L

1
a, L

2
a and let D1

b , D
2
b , L

1
b , L

2
b be as provided

by Lemma 1.8 for both fa and fb and let La = L1
a ∪ L2

a and Lb = L1
b ∪ L2

b .

Every NSC in Ψ+
a must contain the edge vw and every NSC in Ψ+

b must contain the

edge xy. Of all NSCs in Ψ+
a , let Γa be the one that minimises ∥ Γa ∩ D2

a ∥ (the

number of components in Γa ∩D2
a) and subject to this also minimises ∥ Γa ∩D1

a ∥.

Similarly let Γb be the one that minimises ∥ Γb ∩D2
b ∥ (the number of components

in Γb ∩D2
b) and subject to this also minimises ∥ Γb ∩D1

b ∥.

Then each component of Γa ∩D2
a contains at most one component of Γa ∩D1

a (and

using lemma 4.1 (ii)), at most 2 components of Γa ∩ L2
a. By the same argument,

each component of Γb ∩D2
b contains at most one component of Γb ∩D1

b (and using

lemma 4.1 (ii)), at most 2 components of Γb ∩ L2
b . We often abbreviate Γi

a to i.

(In later parts of the proof we also use components of Γ′
a, abbreviated i′, where

i = 1, 2, ... and components of Γ′
b, abbreviated j′, where j = 1, 2, ...). We represent

subsegments of component i as ij where j is a letter, e.g 3a is a subsegment of

3 = Γ3
a.

Since Ψa and Ψb are equivalent by lemma 4.3.2, all operations on Γa applies simi-

larly on Γb. We now focus on Γa and conclude to operations of Γb by equivalence of

the embeddings.

The minimality assumption further guarantees that any arc inD2
a that joins different

components Γi
a, Γ

j
a of Γ∩D2

a and is otherwise disjoint from Γa is essential. If it were
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not essential then we could replace one of the segments iΓaj or jΓai with a section

of L2
a, reducing ∥ Γa ∩D2

a ∥. This is true even if the segment of L2
a we wish to use,

intersects other components of Γ2
a ∩D2

a, because those other components must also

be part of the segment of Γa we are replacing.

Let Γ3
a be the component of Γa ∩ D2

a that contains vw. Then Γ3
a ∩ La has four

components which we name 3a, 3b, 3c, 3d in order along Γa with 3a, 3d ⊂ L2
a and

3b, 3c ⊂ L1
a. We may assume that v ∈ 3b and w ∈ 3c. For ease of description, we

assume that D2
a is drawn as a circular disk and Γ3

a passes downwards through D2
a,

with 3a containing its top point and 3d its bottom point. Other than Γ3
a, no other

component of Γa ∩D2
a contains more than one component of Γa ∩ L1

a.

In fact, any other component Γi
a of Γa∩D2

a is one of two types. If ∥ Γi
a∩D1

a ∥= 1, i is

a segment of L2
a. Otherwise, ∥ Γi

a ∩La ∥= 3 and i includes two segments ia, ic of L2
a

and one segment ib of L1
a with ia, ib, ic in that order along Γa. Since Ψa is critical, Γa

intersects both (3bL1
a3c)

o and (3cL1
a3b)

o, otherwise we could reroute Γa to avoid (the

interior of) 3bΓa3c = vw. Moreover, each component of Γa ∩ D2
a which intersects

(3cL1
a3b)

o cannot be rerouted via 3dL2
a3a or we could reduce ∥ Γa ∩D1

a ∥.

Let Γ2
a denote any such component, with 2a, 2c ⊂ L2

a and 2b ⊂ L1
a. Note that

Γ2
a passes upwards through D2

a, so that the half of fa to the right of Γ3
a is also

to the right of Γ2
a. Since Γ2

a cannot be rerouted there is at least one component

of Γa ∩ D2
a that intersects (2aL2

a2c)
o. Let Γ1

a denote any such component, which

must be a segment of L2
a and passes downwards through D2

a. In similar way, we
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can find Γ4
a passing upwards through D2

a, intersecting (3aL2
a2c)

o at 4a and 4c and

intersecting (3bL1
a3c)

o at 4b. Then we must also have Γ5
a = 5 passing downwards

through D2
a and contained in (4cL2

a4a)
o. In general, it is not known whether a given

component of Γa ∩ La is trivial (single vertex) or not. The above description can be

well represented by figure 4.2.

Figure 4.2: Segments of Γ in D2, see [5].

Let A0 denote the part of S3 to the left of Γa, and B0 the part to the right; Also B0

is the part of S3 to the left of Γb and C0 to the right. A0, B0 and C0 are punctured

tori. For i ≥ 1, let Ai denote the unique component of A0 ∩D2
a to which Γi

a belongs;

define Bi similarly. (If Γi
a ⊂ L2

a, one of Ai or Bi will be just Γi
a itself). We know that

A1 = A2, B2 = B3, A3 = A4 and B4 = B5.

We will frequently use the orthogonal arrangements of parallel paths to construct a

new NSC Γ′
a in Ψ+

a . In notation, OP (P, P ′;Q,Q′), P , P ′ will be paths in A0 and Q,
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Q′ those in B0. There are two common ways in which this provides a contradiction.

First, Γ′
a may avoid the edge vw, and so be an NSC for Ψa; we indicate this by

AOP (P, P ′;Q,Q′). Second, Γ′
a ∩D2

a may have fewer components than Γa ∩D2
a; we

indicate this by COP (P, P ′;Q,Q′).

Suppose P , P ′, Q, Q′ all lie in D2
a. When we form Γ′

a from Γa we delete the interiors

of four nontrivial segments of Γa, say S1, S2, S3, S4 and then add the interiors of

P , P ′, Q, Q′. Each end of Sj lies in some component of Γa ∩ D2
a. Suppose each

Sj intersects sj components of Γa ∩ D2
a, then sj ≥ 1. When we delete So

j , the

number of components in D2
a changes by 2 − sj. When we add P o, P ′o, Q, Q′o,

the number of components in D2
a changes by -4. Thus ∥ Γ′

a ∩ D2
a ∥=∥ Γa ∩ D2

a ∥

+4− s1 − s2 − s3 − s4.

The above analysis is valid even when the interiors of P , P ′, Q, Q′ intersect com-

ponents of Γa ∩ D2
a. If we do not have s1 = s2 = s3 = s4 = 1, then we have

COP (P, P ′;Q,Q′). In particular, let OOP [i](P, P ′;Q,Q′) denote the situation in

which some component i of Γa ∩D2
a contains an odd number of the eight endpoints

of P, P ′;Q,Q′ (counted with multiplicity). Then sj > 1 for some j, so this is a

special case of COP (P, P ′;Q,Q′).

Now we break into cases according to the order of 1,2,3,4,5 along Γa. For any

distinct components i1, i2,...,ik of Γa∩D2
a, we say that Γa has (i1i2, ..., ik) if i1, i2,...,ik

occur in that order along Γa.

(A) Suppose Γa has (1432). (Since we do not mention component 5, no assumption

47



is made about its position). By lemma 4.1, Γa∩(2aL2
a1)

o = Γa∩(4aL2
a3d)

o = ∅. Note

that by lemma 3.2.2, Γa ∩ (2cL2
a3a)

o ⊂ (3Γa2)
o.

For easy understanding of the subsequent arguments in the proof, figure 4.3 shows

how we construct new NSCs using corollary 4.1.2 in the first two cases here. The

solid chords are essential paths in A0, the dashed chords are essential paths in B0,

and the edges of Γ used by the new NSC are hatched.

Figure 4.3: Construction of new NSCs in the first 2 cases of A. Case 1 (left), case 2
(right), see [5].

First, suppose that Γa ∩ (3cL1
a2b)

o = ∅. Let P = 2c(∂B3)3a (P is just 2cL2
a3a if

Γa∩ (2cL2
a3a)

o = ∅). Since Γa∩ (2cL2
a3a)

o is contained in (3Γa2)
o, we have P o∩Γa ⊂

(3Γa2)
o. Now we have AOP (2aL2

a1, 4aL
2
a3d; 3cL

1
a2b, P ). This is illustrated on the

left of figure 11. Note that (3Γ2)o is not hatched, showing that this part of Γ may

be used by P if necessary.

Second, suppose that Γa ∩ (2bL1
a3b)

o = ∅. Since Γ1
a ∩ (2cL2

a3a)
o ⊂ (3Γa2)

o, we

may have OOP [1](2aL2
a1, 4aL

2
a3d; 2cL

2
a3a, 2bL

1
a3b). This is illustrated on the right of
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figure 4.3. Though these two cases appear similar, they are different.

Finally, we may suppose that there exists Γ6
a = 6 that intersects (2bL1

a3b)
o and

Γ7
a = 7 that intersects (3cL1

a2b)
o. By lemma 3.2.2, 2,3,6 and 7 are the only com-

ponents of Γa ∩ D2
a intersecting B3, and Γa has (3627). If Γa has (271) then

we have OOP [1](2aL2
a1, 4aL

2
a3d; 2bL

1
a6b, 3cL

1
a7b). If Γa has (173) then we have

OOP [1](2aL2
a1, 4aL

2
a3d; 2bL

2
a6b, 7bL

1
a2b). By symmetry we may also exclude the cases

where Γa has (1234), (5234), or (5432).

(B) Suppose Γa has (1342). By Lemma 4.1, Γa∩(2aL2
a1)

o = Γa∩(3aL2
a4c)

o = ∅. Sup-

pose that Γa ∩ (2cL2
a3a)

o = ∅, then we have OOP [1](2aL2
a1, 3aL

2
a4c; 2cL

2
a3a, 2bL

1
a3b).

Therefore, we may assume Γa ∩ (2cL2
a3a) ̸= ∅, and similarly Γa ∩ (3dL2

a2a)
o ̸= ∅. Let

Γ6
a = 6 intersect (2cL2

a3a)
o, and Γ7

a = 7 intersect (3dL2
a2a)

o. By lemma 3.2.2, 2,3,6,7

are the only components of Γa ∩ D2
a intersecting B3 and Γa has (3627). Then we

have OOP [1](2aL2
a1, 3aL

2
a4c; 2cL

2
a6, 3dL

2
a7). Figure 4.4 shows how new NSCs are

constructed in this case.

Figure 4.4: Construction of new NSCs in the first 2 cases of B. Case 1 (left), case 2
(right)
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By symmetry, we may also exclude the cases where Γa has (1243), (5324) or

(5423).

Now we know that Γa must have either (1324) or (1423), and either (5243) or

(5342). So the overall order must be (13524) or (14253). These cases are symmet-

ric, so let us assume the order is (14253). Given this order, there is a symmetry that

reverses Γa and swaps A0 and B0. For our standard picture of D2
a, this amounts to

rotating D2
a by 180o and reversing Γa.

Consider the components of Γa ∩ D2
a that intersect (2aL2

a2c)
o. Each such compo-

nent lies in 3Γa4)
o, otherwise we could choose that component as 1 and have case

(A) or (B). Let 1 be the first and 1′ the last such component along 3Γa4. (Pos-

sibly 1 = 1′). By Lemma 3.2.2 there are at most three such components, and 1

is the first and 1′ the last, along 2aL2
a2c. Thus, Γa ∩ (2aL2

a1)
o = Γ(1′L2

a2c)
o = ∅.

If there are three distinct components 1, 1⋆, 1′ in order along Γa, then 3aL2
a4c

violates CS(1L2
a1

⋆, 1′L2
a2c)(i) in A0. Therefore, there are at most two such com-

ponents. Similarly, at most two components of Γa ∩ D2
a intersects (4cL2

a4a)
o, they

lie in (2Γa3)
o and if 5 is the first and 5′ the last along 2Γa3 (possibly 5=5′), then

Γa ∩ (4cL2
a5

′)o = Γa ∩ (5L2
a4a)

o = ∅.

If Γa ∩ (2cL2
a3a)

o ̸= ∅, we denote the component of Γa ∩ D2
a closest to 3a by 6,

and that closest to 2c by 6′ (possibly 6=6′). If Γa ∩ (4aL2
a3d)

o ̸= ∅, we denote the

component of Γa∩D2
a closest to 2a by 7 and that closest to 3d by 7′ (possibly 7=7′).

By Lemma 3.2.2, Γa has (366′277′) suitably modified to identify components that are
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the same and delete components that do not exist. Similarly, if Γa ∩ (3aL2
a4c)

o ̸= ∅,

we denote the component of Γa ∩D2
a closest to 3a by 8 and that closest to 4c by 8′

(possibly 8=8′). If Γa ∩ (4aL2
a3d)

o ̸= ∅ we denote the component of Γa ∩D2
a closest

to 4a by 9 and that closest to 3d by 9′ (possibly 9=9′). By Lemma 3.2.2, Γa has

(388′499′) suitably modified. Note that 6, 6′, 7, 7′, 8, 8′, 9, 9′ may or may not intersect

L1
a.

Claim 1. At least one of 7 and 8 exists

Proof. If not, we have the OP (3bL1
a4b, 3aL

2
a4c; 3cL

1
a2b, 3dL

2
a2a) which produces Γ′

a

with ∥ Γ′
a ∩ D2

a ∥=∥ Γa ∩ D2
a ∥ and ∥ Γ′

a ∩ D1
a ∥=∥ Γa ∩ D1

a ∥ −2 contradicting the

minimallity of Γa.

Claim 2. At most one of 6 and 7 exists. By symmetry, at most one of 8 and 9

exists.

Proof. Suppose both 6 and 7 exists. By Lemma 3.2.2(i), 2, 3, 7 are the only com-

ponents of Γa ∩ D2
a intersecting B3, and Γa has (3627). To avoid an arc (not nec-

essarily path) from 4 to 5 in B5 violating CS(6L2
a3a, 7L

2
a2a)(i) in B0, Γa must have

(275) when it has (374), and must have (573) when it has (462). So Γa has either

(364275) or (346257).

Case (2.1) Suppose Γa has (364275). If 8 does not exist, let P = 3aL2
a4c and

P ′ = 3bL1
a4b; If 9 does not exist, let P = 4aL2

a3d and P ′ = 4bL1
a3c. In either case we

have OOP [2](P, P ′; 3dL2
a7, 2cL

2
a6). Therefore, 8 and 9 exist. By lemma 1.3, 3,4,8,9

are the only components of Γa ∩D2
a intersecting A3, and Γa has (3849).
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To avoid an arc from 1 to 2 in A1 violating CS(3aL2
a8, 4aL

2
a9)(i) in A0, Γa must have

(429) when it has (318), and must have (923) when it has (814). So Γa has either

(318429) or (381492). If Γa has (318429) we haveOOP [2](8L2
a4c, 9L

2
a3d; 6L

2
a3a, 7L

2
a2a).

If Γa has (381492) we have OOP [5](8L2
a4c, 9L

2
a3d; 6L

2
a3a, 5L

2
a4a).

Case (2.2) Suppose Γa has (346257). If Γa ∩ (3aL2
a4c)

o = ∅ let P = 3aL2
a4c and

P ′ = 3bL1
a4b; if Γa ∩ (4aL2

a3d)
o = ∅ let P = 4aL2

a3d and P ′ = 4bL2
a3c. In either case

we have OOP [5](P, P ′; 3dL2
a7, 5L

2
a4a).

Claim 3. If 7 exists, then 7 = 7′ and Γa has (275). By symmetry, if 8 exists then

8 = 8′ and Γa has (1′84).

Proof. We first show that Γa does not have (364). Suppose Γa has (364). Since at

most one of 8 and 9 exists by Claim 2, we may take paths P , P ′ to be either 3aL2
a4c,

3bL1
a4b or 4bL1

a3c, 4aL
1
a3d. Then we have OOP [5](P, P ′; 3dL2

a7
′, 5L2

a4a).

If 7 ̸= 7′ then to avoid an arc from 4 to 5 violating CS(3dL2
a7

′, 7L2
a2a)(i) in B0,

Γa must have (2757′3) and hence (57′3). Thus 7 = 7′, and since Γa does not have

(57′3) = (573), it must have (275).

Claim 4. If 6 exists then 6 = 6′ and Γ has (462). By symmetry, if 9 exists then 9 = 9′

and Γa has (492).

Proof. We first show that Γa does not have (364). Suppose Γa has (364). Since at

most one of 8 and 9 exists by Claim 2, we may take paths P , P ′ to be either 3aL2
a4c,

3bL2
a4b or 4bL1

a3c, 4aL
2
a3d. Then we have OOP [5](P, P ′; 6L2

a3a, 5L
2
a4a).
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If 6 ̸= 6′ then to avoid an arc from 4 to 5 violating CS(2cL2
a6

′, 6L2
a3a)(i) in B0, Γa

must have (3646′2) and hence (462).

Now from claim 1 we may assume without loss of generality that 7 exists. By claim

2, 6 does not exist, and at most one of 8 or 9 exists. If 8 exists then Γa has (31′84275)

by claim 3, and we get OOP [1′](1′L2
a2c, 8L

2
a4c; 5L

2
a4a, 7L

2
a2a). If 9 exists, then Γa has

(31′49275) by claim 4 and we get OOP [1′](1′L2
a2c, 4aL

2
a9; 5L

2
a4a, 7L

2
a2a). Therefore,

none of 6, 8 or 9 exists.

To summarise; Γa has (314275), 7 exists, 7 = 7′, and none of 6, 8, or 9 exists.

To find new NSCs in this situation, we use paths that may lie outside disk D2
a. By

Lemma 4.3.4 (ii), every edge of L2
a belongs to a face , contained in D2

a that includes

a vertex of L1
a. Applying this to an edge of L2

a with at least one end in 1, we obtain

a face g with at least one vertex v1 of 1 and at least one vertex v2 of 2b. The only

components of Γa ∩ D2
a that g may intersect are 1, 2 and (if 1 = 1′) 1′. By lemma

4.3.4 (ii), g ∩ 1 and g ∩ 1′ have at most one component each. Apply lemma 4.3.4 to

g, letting E1 and E2 be the disks, with boundaries M1 and M2.

Let O12 be an arc from v1 to v2 inside g, and let O34 be an arc from an interior point

v3 of vw to a vertex v4 of 4b inside fa ∩ A0. Cut A0 along O12 and O34; the result is

a disk with clockwise boundary (in compressed notation).

v1O12v2Γ
−1
a v4O

−1
34 v3Γ

−1
a v2O

−1
12 v1Γ

−1
a v3O34v4Γ

−1
a v1

(We do not distinguish between two copies of O12, O34, v1, v2, v3, v4 since it will be

clear which one we mean). This disk contains a slightly smaller disk R, whose
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boundary we divide into left, right, top and bottom segments for convenience.

Reading bottom to top, R has Q1 = v1Γ
−1
a 3d(L2

a)−14aΓ−1
a v1 on the left and Q2 =

v2Γa3aL
2
a4cΓav2 on the right. Reading left to right, R has O12 on the top and O−1

12

on the bottom. We use >, <, ≥, ≤ to denote order along Q1 or Q2, so that, for

example, u > v means u is above v. Along Q1 we have v1 < 3d < 4a < v1, with

4a < 1′ < v1 if 1′ ̸= 1. Along Q2 we have v2 < 2c < 7 < 5 < 3a < 4c < 2a < v2.

Now examining (M1 ∪M2) ∩ R, there must be vertices x1 > x2 > x3 > x4 on Q1,

y1 > y2 > y3 > y4 on Q2 and paths P1, P2, P3, P4 in R such that

(i) P1, P2, P3, P4 are vertex-disjoint, except that P1 and P2 may intersect at either

both of v1, v2;

(ii) Each Pi has ends xi, yi and is otherwise disjoint from ∂R;

(iii) P1 and P4 are segments of M1, while P2 and P3 are segments of M2; and

(iv) x1 ∈ 1, y1 ∈ 2, x4 ∈ 1 or 1′, y4 ∈ 2

The paths P1 and P4 are just the obvious segments of ∂g =M1. IfM2 did not contain

two disjoint paths P2, P3 as described, then we could find a circle in E2 that was

Non-contractible in S3, contradicting the fact that E2 is a disk.

If an end of P2 or P3 belongs to (4aL2
a3d)

o or (3aL2
a4c)

o, then the path is not essential

because it does not have both ends on Γa. However it can be extended to essential

path in more than one way. Given xi > 3d, define X+
i to be 4aL2

axi if xi < 4a or xi

if xi ⩾ 4a. Given xi < 4a, define X−
i to be xiL2

a3d if xi > 3d or xi otherwise. Define
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Y +
i and Y −

i on the right similarly based on the relationship of yi to 4c and 3a.

Let w5 be the last vertex of 5 along Γa. Note that 5L2
a4a = w5L

2
a4a. Suppose first that

x3 < 4a. Then necessarily x4 ∈ 1. If y3 < w5 then OP (P1, X
−
3 ∪ P3; 5L

2
a4a, 7L

2
a2a)

produces a separating cycle which does not use 4b; replace vw by vL1
aw to obtain a

separating cycle avoiding vw. If w5 ⩽ y3 < 4c, then since x4 ∈ 1 we have AOP (X−
3 ∪

P3 ∪ Y −
3 , P4; 2cL

2
a3a, 3dL

2
a7 ∪ 7 ∪ 7L2

a2a). If y3 ⩾ 4c then we have the rather compli-

cated AOP (P1, X
−
3 ∪P3∪y3Γ−1

a 4c∪4c(L2
a)

−13a; 2cL2
a3a, 3dL

2
a7∪7Γa5∪5L2

a4a).

Now suppose that x3 ⩾ 4a, and that y2 ⩽ 3a. If Γa ∩ (3cL1
a2b)

o = ∅ then we have

AOP (P2, P3; 2cL
2
a3a, 3cL

2
a2b). Otherwise 7 must intersect 3cL1

a2b so 7 has segments

7a, 7c, on L2
a and 7b on L1

a. Then we haveAOP (3aL2
a4c, 4bL

1
a3c; 3cL

1
a7b, 3dL

2
a7a).

Finally, suppose thatX3 ⩾ 4a and y2 > 3a. If x4 ∈ 1, thenOP (P2∪Y +
2 , P4; 5L

2
a4a, 7L

2
a2a)

produces a separating cycle that does not use 4b; replace vw by vL1
aw to ob-

tain a separating cycle avoiding vw. If x4 /∈ 1 then 1 ̸= 1′ and x4 ∈ 1′. Let

P ′
2 = P2 ∪ y2Γ

−1
a 4c ∪ 4c(L2

a)
−3a if y2 ⩾ 4c and P ′

2 = P2 ∪ Y −
2 if 3a < y2 < 4c.

Then we have AOP (P4, P
−
2 ; 2cL2

a3a, 3dL
2
a7 ∪ 7Γa5 ∪ 5L2

a4a).

Since the embeddings Ψa and Ψb are equivalent by lemma 4.3.2, all operations

applying on Γa also applies similarly on Γb. We have covered all cases, so this

concludes the proof.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This chapter presents conclusion of the study and a brief recommendation. We also

suggest possible areas of further study from our results.

5.1 Conclusion

In the conclusion, we comfortably state that the general objective of proving that

every 4-representative graph embedding on the triple torus contains two NSCs

which separates the triple torus into 3 connected components is achieved. This was

done by analysing Ellingman & Zhao’s method of proving that every 4-representative

embedding on the double torus contains an NSC which splits the torus into two

connected components.

After analysing Ellingman & Zhao’s method and applying it to the proof of our

main theorem we it is found that the method works efficiently and our results are

consistent with those obtained by them in their proof.

Therefore it is concluded here that every 4-representative graph embedding on the

triple torus contains two NSCs.

56



The notions of equivalence in graph embeddings and that of homeomorphism of

surfaces as defined topologically were used in extending Ellingman & Zhao’s method

to apply on a triple torus.

5.2 Recommendations

We find that Ellingman & Zhao’s method of proving that every 4-representative

embedding on the double tori contains an NSC works efficiently in proving existence

of NSCs in graph embeddings on the triple tori. As it has been done in this study,

by employing equivalence of embeddings and homeomorphism of surfaces it can

therefore be recommended that the method works efficiently in proving existence

of NSCs in triple toroidal embeddings and possibly in embeddings of connected

sums of tori. We recommend that our results can be used to prove existence of

NSCs in 4-representative embeddings on connected sum of tori, and even to other

higher surfaces.

5.3 Future work/Areas of further research

This study of existence of NSCs in critical triple toroidal embeddings sets a foun-

dation for some future areas of study. Our results can motivate further study on

existence of NSCs in graph embeddings on connected sum of n tori for n ≥ 4.
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Abstract

We consider Ellingman and Zhao’s method of proving that every 4-representative
graph embedding on the double torus contains a Non-Contractible Separating Cycle
(NSC). In literature it has not been proven yet that 4-representative embeddings
on triple tori contains (NSCs). We use existing theorems including Ellingman and
Zhao’s method to prove existence of NSCs in embeddings on the triple torus. We
find that every 4- representative embedding on the triple torus contains two NSCs
which separates the triple torus into 3 connected components, namely punctured
tori, two of them with one boundary circle and one with two boundary circles.

Keywords: Non-contractible Separating Cycle (NSC), embeddings, representativity,
torus, homeomorphism.

1 Introduction

A graph G is a pair of sets, V (G) and E(G), where V (G) is nonempty and E(G) is
a set of 2-element subsets of V (G). A walk in the graph G = (V,E) is a finite se-
quence of the form vi0 , ej1 , vi1 , ej2 , . . . , ejk , vik , which consists of alternating vertices
and edges of G. The walk starts at a vertex. A walk is open if vi0 ̸= vik , see [5, 1].
1 Graphs can be studied on the sphere (plane), or on other surfaces. A surface is
a compact two-dimensional manifold, possibly with boundary. Equivalently, a sur-
face is a compact topological space that is Hausdorff (any two distinct points have
disjoint neighbourhoods) and such that every point has a neighbourhood homeo-
morphic to a plane or a closed half plane, we refer to [5].

An embedding Ψ of a graph G on a surface Σ is a crossing free drawing of G on Σ.
It maps the vertices of G to distinct points of Σ and its edges to paths of Σ whose
endpoints are images of their incident vertices. Representativity of an embedding
is defined as a set ρ(Ψ) = min{|Γ ∩G| : Γ is a Non-contractible simple closed curve
on Σ}. The embedding is critical if it is close to having NSC, see [6, 2].

T is used to denote the torus. A graph G is toroidal if G embeds in T . Let Ψ be
an embedding of G = G(Ψ) in T . The closure of each connected component of
T\G(Ψ) is called a face of Ψ (closed faces are mostly preferred to open ones ). The

1pjuwawo@must.ac.mw (Precious Juwawo)
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face set of an embedding Ψ in T is denoted by F (Ψ). If the graph is 2-connected
and ρ(Ψ) ⩾ 2 then each face f is bounded by a cycle, called a facial cycle and is
denoted by ∂f . ∂X denotes the boundary of a set X ⊂ T . Two vertices x and y are
cofacial by a face f if x, y ∈ ∂f . Embeddings with ρ(Ψ) ⩾ 4 have all faces bounded
by cycles in graphs, see [6].

Some authors have explored conditions for existence of NSCs of embedded graphs
and some have proven existence of NSCs in graph embeddings under such con-
ditions. Most of these conditions involve representativity or face width of graph
embeddings. Ellingman N. & Zha X in [2] conjectured that if a graph G is embed-
ded on a surface of genus (orientable or non orientable) at least 2, then it may have
a Non contractible separating cycle (NSC). They proved that every 4-representative
graph embedding in the double torus has an NSC which separates the surface into
2 connected components.

In this work we explore existence of non-contractible separating cycles in crit-
ical embeddings on the triple torus. We wish to prove existence of NSCs in 4-
representative graphs embedded on the triple torus.

2 Results

Proposition 2.1: The Cylinder-Strip Lemma. Given a punctured torus T0, with
two boundary circles Γa and Γb, let Pa, P ′

a and Pb, P ′
b be a pair of parallel disjoint

essential arcs. Let P ′′
a be an essential arc disjoint from Pa and P ′

a and P ′′
b be an

essential arc disjoint from Pb and P ′
b. Then,

(i) Both ends of P ′′
a must lie in the cylinder, Ca or both ends must lie in the strip,Sa

of CaSa(Pa, P
′
a).

(ii) Both ends of P ′′
b must lie in the cylinder, Cb or both ends must lie in the strip,Sb

of CbSb(Pb, P
′
b)

(iii) If both ends of P ′′
a lie in the strip Sa, then they lie at opposite ends.

(iv) If both ends of P ′′
b lie in the strip Sb, then they lie at opposite ends.

Let D be a closed disk in Σ0 (a punctured surface) and suppose Γ ∩ D = Γ ∩ ∂D

consists of a finite number of components. We say that Γ and D intersect essentially
if every arc in D joining two distinct components of Γ∩D is essential. The following
lemma shows how many possible components of Γ ∩ D can occur in a punctured
torus.

Lemma 2.2: Suppose Γa and Γb are boundary circles of a punctured torus T0, and
Γa and Γb intersect disks Da and Db essentially, respectively. Let La = ∂Da and
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Lb = ∂Db both oriented clockwise. Let Γ1
a,Γ

2
a, ...,Γ

k
a be the components of Γa∩Da =

Γa ∩ La and Γ1
b ,Γ

2
b , ...,Γ

k
b be the components of Γb ∩ Db = Γb ∩ Lb both oriented

clockwise along their respective boundaries where Γi
a = xiLay

i and Γj
b = xjLby

j for
each i and j respectively.

(i) k ≤ 4

(ii) If k = 2 then (y1a, x
1
a, y

2
a, x

2
a) occur in that clockwise order along Γa and (y1b , x

1
b , y

2
b , x

2
b)

occur in that clockwise order along Γb

(iii) If k = 3 then (y1a, x
1
a, y

2
a, x

2
a, y

3
a, x

3
a) occur in that clockwise order along Γa and

(y1b , x
1
b , y

2
b , x

2
b , y

3
b , x

3
b) occur in that clockwise order along Γb

(iv) If k = 4 then (y1a, x
1
a, y

2
a, x

2
a, y

3
a, x

3
a, y

4
a, x

4
a) occur in that clockwise order along Γa

and

(y1b , x
1
b , y

2
b , x

2
b , y

3
b , x

3
b , y

4
b , x

4
b) occur in that clockwise order along Γb

Proof. By expanding Da and or Db slightly if necessary, we may assume that xi
a ̸= yia

for all i and similarly that xj
b ̸= yjb for all j. If we add a disk Da along Γa, La and Γa

are both contractible and have natural clockwise orientations, which must oppose
each other where they meet. Thus yia is followed on Γa by xi

a and xi
a must be

followed by some yia. On the other hand, if we add a disk Db along Γb, Lb and Γb are
both contractible and have natural clockwise orientations, which must oppose each
other where they meet. Thus yjb is followed on Γb by xj

b and xj
b must be followed by

some yjb .

We first prove (ii), (iii) and (iv) and then prove (i).

(ii) When k = 2 the given orders are the only possible ones.

(iii) Suppose k = 3. There are only two possible clockwise orders along Γa. If
the order is (y1a, x

1
a, y

3
a, x

3
a, y

2
a, x

2
a) then the essential arc y3aLax

1
a has both ends at the

same end of the strip of CaSa(y
1
aLax

2
a, y

2
aLax

2
a) contradicting (iii) of the cylinder-strip

lemma and if the order is (y1b , x
1
b , y

3
b , x

3
b , y

2
b , x

2
b) then the essential arc y3bLbx

1
b has both

ends at the same end of the strip of CbSb(y
1
bLbx

2
b , y

2
bLbx

2
b) contradicting (iv) of the

cylinder-strip lemma.

(iii) By shifting Da slightly we may apply (iii) separately to both collections Γ1
a, Γ

2
a,

Γ3
a and Γ1

a, Γ
3
a, Γ

3
a and get the required order. Also by By shifting Db slightly we

may apply (iii) separately to both collections Γ1
b , Γ

2
b , Γ

3
b and Γ1

b , Γ
3
b , Γ

3
b and get the

required order.

(i) If k ≥ 5, then by shifting the disk Da slightly we may assume that k = 5. By sim-
ilar reasoning to (iv) the clockwise order must be (y1a, x

1
a, y

2
a, x

2
a, y

3
a, x

3
a, y

4
a, x

4
a, y

5
a, x

5
a).

Now the essential arc y4aLax
5
a has one end in the cylinder and the other end in the
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strip of CaSa(y
5
aLax

1
a, y

2
aLax

3
a) contradicting (i) of the cylinder-strip lemma. On the

other hand, by shifting the disk Db slightly we may assume that k = 5. By simi-
lar reasoning to (iv) the clockwise order must be (y1b , x

1
b , y

2
b , x

2
b , y

3
b , x

3
b , y

4
b , x

4
b , y

5
b , x

5
b).

Now the essential arc y4bLbx
5
b has one end in the cylinder and the other end in the

strip of CbSb(y
5
bLbx

1
b , y

2
bLbx

3
b) contradicting (ii) of the cylinder-strip lemma.

2.1 The double and triple tori

Suppose we have an oriented non contractible separating circle Γ of the torus S2.
It separates S2 into two punctured tori A0, B0 which are both closed and include Γ.
When convinient, A0 is completed with disc A⋆ to a torus A and B0 with a disk B⋆

to a torus B. If both A and B inherit the orientation of S2, Γ will be clockwise in
A and anticlockwise in B. In other words, Γ goes clockwise around A⋆ so A⋆ is to
the right of Γ in A, and A0 is to the left of Γ in both A and S2. Similarly B0 is to the
right of Γ. See figure 1.

Figure 1: NSC Γ on a double torus

Now we consider a triple torus S3. Suppose we have 2 oriented noncontractible
separating circles Γa, Γb of the triple torus. Together they separate the triple torus
into three punctured tori, A0, B0, C0. A0 contains Γa, B0 contains both Γa and Γb

and C0 contains Γb meaning that both A0, B0 and C0 are closed. When convinient,
we will complete A0 with disk A⋆ to torus A, B0 with disks B⋆

1 and B⋆
2 to torus B

and C0 with disk C⋆ to torus C.

A0 and C0 are punctured tori with one boundary circle each, Γa and Γb respectively.
B0 is a punctured torus with two boundary circles Γa and Γb. We assume that Γa

goes clockwise around A⋆. So A⋆ is to the right of Γa in A and A0 is to the left of Γa
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in both A and S3. Γb goes clockwise around C⋆ in C so C⋆ is to the right of Γb in C

and C0 to the left of Γb in both C and S3. Since Γa goes clockwise around A⋆ in A,
it goes anticlockwise in B, meaning B0 is to the left of Γa in that case. Similarly B0

is to the right of Γb. See figure 2.

Figure 2: NSCs Γa and Γb on a triple torus

We now discuss some of the ways Γa and Γb can pass through given closed disks Da

and Db. Let La = ∂Da and Lb = ∂Db. Suppose Γa∩Da has finitely many components
including but not limited to Γ1

a, Γ
2
a, Γ

3
a, Γ

4
a and Γb∩Db has finitely many components

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b with;

i. Each Γi
a ∩ La has at most 2 components, 1 ≤ i ≤ 4 and Γj

b ∩ Lb has at most 2
components 1 ≤ j ≤ 4

ii. There is an arc P1 in Da with ends on La and P o
1 ⊂ Do

a such that P1 ∩ Γa =

x1, x2, x3, x4 where x1, x2, x3, x4 are in that order along P1. Each xi belongs to
Γi
a and Γ2

a and Γ3
a cross (not just intersect) P1 at x2 and x3 respectively.

Similarly there is an arc P2 in Db with ends on Lb and P o
2 ⊂ Db such that

P2 ∩ Γb = y1, y2, y3, y4 where y1, y2, y3, y4 are in that order along P2. Each yi
belongs to Γj

b and Γ2
b and Γ3

b cross P2 at y2 and y3 respectively.

Assume that x1P1x2 ⊂ A0 and y1P2y2 ⊂ B0. For each i, let ia denote the first
component of Γi

a ∩ La following Γi
a along Γa and ib the last. And for each j let jd

denote the first component of Γj
b ∩ Lb following Γj

b along Γb and jf the last.

By the fact that Γa is separating and using orientations of A0 and B0 the components
1a, 2b, 3a, 4b, 4a, 3b, 2a, 1b occur in that clockwise order along La (so 2a ̸= 2b, 3a ̸=
3b, but possibly 1a = 1b or 4a = 4b). Similarly by the fact that Γb is separating and
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using the orientations of B0 and C0 the components 1d, 2e, 3d, 4e, 4d, 3e, 2d, 1e
occur in that clockwise order along Lb (so 2e ̸= 2d, 3d ̸= 3e but possibly 1d = 1e, or
4e = 4d)

There are six possible cyclic orders in which components Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a can occur

along Γa and six possible cyclic orders in which components Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b can occur

along Γb. In each case they occur in pairs which are equivalent up to reversal of Γa

and Γb respectively. If we know that Γa intersects the (closures of the) components
of Da\Γa essentially, then for some of these orders we can place restrictions on
where additional components of Γa ∩ Da can be. Similarly if we know that Γb

intersects the (closures of the) components of Db\Γb essentially, then for some of
these orders we can place restrictions on where additional components of Γb ∩ Db

can be.

The following lemma shows possible orders of arrangements of segments of Γa∩Da

and Γb ∩Db on a triple torus.

Lemma 2.1.1: Suppose Γa and Γb are two non-contractible separating circles of S3

with disks Da and Db and components Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a of Γa ∩ Da and components

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b of Γb ∩Db as described above. Suppose further that Γa intersects the

closure of every component of Da\Γa essentially (in A0 or B0 as appropriate) and
that Γb intersects the closure of every component of Db\Γb essentially (in B0 or C0

as appropriate).

1. If the components occur along Γa in the order (1432) then Γa ∩ (2aLa1b)
o =

Γa ∩ (4aLa3b)
o = ∅ and if the components occur along Γb in the order (1432)

then Γb ∩ (2dLb1e)
o = Γb ∩ (4dLb3e)

o = ∅

2. If the components occur along Γa in the order (1342) then Γa ∩ (2aLa1b)
o =

Γa ∩ (3aLa4b)
o = ∅ and if the components occur along Γb in the order (1342)

then Γb ∩ (2dLb1e)
o = Γb ∩ (3dLb4e)

o = ∅

Proof: Suppose in Case 1 that Γa ∩ (2aLa1b)
o ̸= ∅. Let Γ5

a (or for short 5) be the
component of Γ ∩ (2aLa1b)

o closest to 1b on La. By lemma 2.2 (iii), 5 ⊂ (2bΓa1a)
o.

But then 5La1b violates CaSa(1aLa2b, 3aLa4b)(i) (i,e violates Lemma 2.1(i)). Here
it is necessary if Γ1

a = 1a = 1b is a single point. Thus, Γa ∩ (2aLa1b)
o = ∅. Simi-

larly suppose that Γb ∩ (2dLb1e)
o ̸= ∅. Let Γ5

b be the component of Γb ∩ (2dLb1e)
o

closest to 1e on Lb. By lemma 2.2 (iii), Γ5
b ⊂ (2eΓb1d)

o. But then 5L1e vio-
lates CbSb(1dLb2e, 3dLb4e)(ii)(i.e violates Lemma 2.1 (ii)). Here it is necessary if
Γ1
b = 1d = 1e is a single point. Thus Γb ∩ (2dLb1e)

o = ∅.

Similarly suppose in Case 2 that Γa ∩ (2aLa1b) ̸= ∅. Let Γ5
a be the component of

Γa∩(2aLa1b)
o closest to 1b on La. By lemma 2.2 (iii), 5 ⊂ (2bΓa1a)

o. But then 5La1b

violates CaSa(1aLa2b, 4aLa3b)(i)(i.e violates Lemma 2.1 (i)). (Note: We assume
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that essential arcs can be shifted slightly if necessary to apply the Cylinder-Strip
Lemma). Here it is necessary if Γ1

a = 1a = 1b is a single point. Thus, Γa∩(2aLa1b)
o =

∅. On the other hand suppose that Γb ∩ (2dLb1e)
o ̸= ∅. Let Γ5

b be the component of
Γb∩(2dLb1e)

o closest to 1e on Lb. By lemma 2.2 (iii), Γ5
b ⊂ (2eΓb1d)

o. But then 5L1e

violates CbSb(1dLb2e, 4dLb3e)(ii)(i.e violates Lemma 2.1 (ii)). Here it is necessary
if Γ1

b = 1d = 1e is a single point. Thus Γb ∩ (2dLb1e)
o = ∅. The rest of the proof is

similar.

2.2 Noncontractible Separating Circles (NSCs)

Next we discuss a method of constructing new NSCs from old ones on general
surfaces in theorem 2.2.1 and Corollary 2.2.2 will show how this applies to a triple
torus.

Theorem 2.2.1: Let Σ be a surface with two oriented NSCs Γa and Γb separating
the surface into 3 closed components A0, B0 and C0. Suppose there are sections Γ1

a,
Γ2
a, Γ

3
a, Γ

4
a of Γa in that order along Γa, and sections Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b of Γb in that order

along Γb. Suppose further that there are arcs P12, P34 in A0, Q23, Q41 in B0, also,
Q12, Q34 in B0 and R23, R41 in C0, such that;

(i) Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a are disjoint, so are Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b

(ii) P o
12, P

o
34, Q

o
23, Q

o
41 are disjoint from Γa and Qo

12, Q
o
34, R

o
23, R

o
41 are disjoint from

Γb

(iii) P12 has ends a1, a2; P34 has ends a3, a4; Q23 has ends b2, b3; Q41 has ends b4, b1
where ai, bi are two ends of each Γi

a (not necessarily in order along Γa); Q12

has ends c1, c2; Q34 has ends c3, c4; R23 has ends d2, d3 and R41 has ends d4,
d1; where cj, bj are two ends of each Γj

b (not necessarily in order along Γb).

(iv) P12 ∪ P34 separates A0 into a component A1 with boundary P12 ∪ a2Γaa3 ∪
P34 ∪ a4Γaa1 (one circle) and a component A2 with boundary (a1Γaa2 ∪ P12) ∪
(a3Γaa4∪P34) (two circles). Q23∪Q41 similarly separates B0 into a component
B1 with boundary Q23∪ b3Γab4∪Q41∪ b1Γab2 (one circle) and a component B2

with boundary (b2Γab3 ∪Q23) ∪ (b4Γab1 ∪Q41) (two circles). In the same way,
Q12∪Q34 separates B0 into a component B3 with boundary Q12∪c2Γbc3∪Q34∪
c4Γbc1 (one circle) and a component B4 with boundary (c1Γbc2∪Q12∪(c3Γbc4∪
Q34) (two circles), while R23 ∪R41 similarly separates C0 into a component C1

with boundary R23 ∪ d3Γbd4 ∪ R41 ∪ d1Γbd2 (one circle) and a component C2

with boundary (d2Γbd3 ∪R23) ∪ (d4Γbd1 ∪R41) (two circles). Then;

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41 and

Γ′′ = Γ1
b ∪ Q12 ∪ Γ2

b ∪ R23 ∪ Γ3
b ∪ Q34 ∪ Γ4

b ∪ R41 are also Non-contractible
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separating circles in Σ2, separating A1 ∪ B2 from A2 ∪ B1 and B3 ∪ C2 from
B4 ∪ C1 respectively.

Proof. We observe from the conditions of the theorem that Γ′ separates A1∪B2 from
A2 ∪B1 and that Γ′′ separates B3 ∪C2 from B4 ∪C1. It is enough to show that both
Γ′ and Γ′′ are Non-contractible or equivalently that none of A1∪B2, A2∪B1,B3∪C2

and B4 ∪ C1 is homeomorphic to a disk.

Since A1 has one boundary circle, it is homeomorphic to a disk with handles and
or crosscaps attached. Since B2 has two boundary circles, it is homeomorphic to
a cylinder with handles and or crosscaps attached. If A1 is just a disk and B2 just
a cylinder, the way they are attached along the segments of Γa between Γ2

a and
Γ3
a and between Γ4

a and Γ1
a means that the result would be homeomorphic to a

punctured torus. More generally, the result is homeomorhic to a punctured torus
with handles and or crosscaps added, which is not a disk. Therefore A1 ∪ B2 is not
a disk. Similarly, it can be shown that A2 ∪ B1, B3 ∪ C2 and B4 ∪ C1 are not disks,
then

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41

is Non-contractible and

Γ′′ = Γ1
b ∪Q12 ∪ Γ2

b ∪R23 ∪ Γ3
b ∪Q34 ∪ Γ4

b ∪R41 is also Non-contractible.

We now apply this to the triple torus, with weaker versions of conditions (ii) and
(iv), and stating condition (iv) in a way that is specific to the triple torus.

Corollary 2.2.2. Suppose Γa and Γb are two Non-contractible separating circles in
the triple torus S3, separating S3 into three (closed) punctured tori A0, B0 and C0.
Suppose there are sections Γ1

a, Γ
2
a, Γ

3
a, Γ

4
a of Γa in that order along Γa, and sections

Γ1
b , Γ

2
b , Γ

3
b , Γ

4
b of Γb in that order along Γb, arcs P12, P34 in A0; Q23, Q41 in B0 ; Q12,

Q34 in B0 and R23, R41 in C0 such that;

(i) Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a are disjoint, so are Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b

(ii) P o
12, P

o
34, Q

o
23, Q

o
41 are disjoint from Γa and Qo

12, Q
o
34, R

o
23, R

o
41 are disjoint from

Γb

(iii) P12 has ends a1, a2; P34 has ends a3, a4; Q23 has ends b2, b3 and Q41 has ends
b4, b1 where ai, bi are two ends of each Γi

a (not necessarily in order along Γa)
and Q12 has ends c1, c2, Q34 has ends c3, c4, R23 has ends d2, d3 and R41 has
ends d4, d1 where cj, bj are two ends of each Γj

b (not necessarily in order along
Γb).

(iv) P12, P34 are homotopic with endpoints fixed in A0 to a pair of parallel essential
arcs and Q23, Q41 are homotopic with endpoints fixed in B0 to a pair of parallel
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essential arcs. Similarly Q12, Q34 are homotopic with endpoints fixed in B0 to
a pair of parallel essential arcs and R23, R41 are homotopic with endpoints
fixed in C0 to a pair of parallel essential arcs. Then;

Γ′ = Γ1
a ∪ P12 ∪ Γ2

a ∪Q23 ∪ Γ3
a ∪ P34 ∪ Γ4

a ∪Q41 and

Γ′′ = Γ1
b∪Q12∪Γ2

b∪R23∪Γ3
b∪Q34∪Γ4

b∪R41 are also Non-contractible separating
circles in S3.

Proof: Conditions (ii) and (iv) mean that by shifting Γa slightly, we can make P12,
P34 and Q23, Q41 into pairs of parallel essential arcs. Similarly, by shifting Γb slightly
we can make Q12, Q34 and R23, R41 into pairs of parallel essential arcs. Then each of
the (slightly shifted) punctured tori is separated into a cylinder and a strip in each
case. Now applying Theorem 2.2.1 completes the proof.

Sets of arcs P12, P34, Q23, Q41 and Q12, Q34, R23, R41 satisfying Corollary 2.2.2 are
called orthogonal arrangements of parallel arcs, or OP for short. They are referred
to as OP (P12, P34;Q23, Q41) and OP (Q12, Q34;R23, R41). The arcs P12, P34, Q23, Q41

are not required to have interiors disjoint from Γa, just from sections Γ1
a, Γ

2
a, Γ

3
a, Γ

4
a.

Similarly, the arcs Q12, Q34, R23, R41 are not required to have interiors disjoint from
Γb, but just from sections Γ1

b , Γ
2
b , Γ

3
b , Γ

4
b . The most common case of this is illustrated

in figure 3. When forming an OP, the two hatched essential arcs joined by a hatched
segment of Γ may be considered equivalent to the single dashed essential arc, as
long as the hatched segment of Γa does not intersect Γ1

a,Γ
2
a,Γ

3
a,Γ

4
a.

Figure 3: Equivalent to an essential arc, see [2].

2.3 Critical Embeddings

In proving the existence of NSCs, Ellingman in [2] used an approach of examining
embeddings which are very close to having an NSC.

The following lemma justifies existence of NSCs in critical embeddings with critical
edges.

Lemma 2.3.1 : Let Σ be a suitable surface (one with genus at least 2), and k ≥ 3

(the representativity of an embedding on such a surface). Suppose there is a k-
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representative embedding in Σ that does not have an NSC. Then there exists a
k-representative embedding Ψ of a simple 2-connected graph in Σ that does not
have an NSC, with a face f containing non-adjacent vertices x, y so that when the
edge xy is inserted across the face f , Ψ+ = Ψ ∪ xy has an NSC. We call Ψ a critical
embedding with critical edge xy, see [2].

Proof: Let Ψ0 be a k-representative embedding of a graph G0 in Σ with no NSC.
Since k ≥ 3 and since multiple edges bounding a disk can be reduced to a single
edge without affecting existence of an NSC, we may assume that G0 is simple.
Moreover, by reducing it to essential 2-component, we may assume that G0 is 2-
connected.

Ellingman N. & Zha X in [2] defined an augmentation of an embedding to be ei-
ther;

(i) The addition of an edge across a face between two nonadjacent vertices on
that face or,

(ii) If every face is a triangle as in triangulation (bounded by a 3-cycle), then in
some face (uvw) subdivide one edge uv with a new vertex x and then add the
edge ux

Neither (i) nor (ii) decreases the representativity. In a sequence of augmentations,
any augmentation following one of type (ii) must be of type (i).

If we apply a sequence of augmentations to Ψ0, each embedding is k-representative
with a graph that is simple and 2-connected. Moreover, by applying a sequence
of augmentations to Ψ0 we can increase its representativity arbitrarily. First, we
complete Ψ0 to a triangulation using type (i) augmentations. It is well known that
in a triangulation, representativity equals the length of a shortest noncontractible
cycle.

Given an edge e = vw on a shortest noncontractible cycle, belonging to two trian-
gles (uvw) and (twv), we can apply four augmentations of type (ii), (i), (ii), (i) with
the effect of deleting vw, adding two new vertices x1, x2, and adding paths vx1w,
vx2w, ux1x2t. This destroys all shortest noncontractible cycles through e without
creating any new shortest noncontractible cycles. After destroying all shortest non-
contractible cycles in this way, the representativity must increase by at least one,
then we can repeat the process. The essence of repeating the process is to raise rep-
resentativity to 6 at which point Zha & Zhao in [6] proved that an NSC exists.

Therefore, it is possible to apply a sequence of augmentations to Ψ0 to raise the rep-
resentativity to at least 6, at which point an NSC exist. Let Ψ be an embedding in
the sequence before the first augmentation that creates an NSC. Type (ii) augmen-
tations cannot create an NSC if one does not already exist. So the augmentations is
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of type (i) and the result follows.

2.4 The Main Result

In this section, it is shown that every embedding on the triple torus with repre-
sentativity at least 4 contains two NSCs. We begin with a standard result on 4-
representative graphs.

Definition 2.4.1: Equivalence of embeddings: Two embeddings Ψa : G −→ Σ

and Ψb : G −→ Σ are equivalent, denoted by Ψa ⋍ Ψb if there exists a graph
automorphism α : G −→ G and an orientation preserving surface homeomorphism
η : Σ −→ Σ for which the map compositions Ψa ◦ η : G −→ Σ and α ◦Ψb : G −→ Σ

are identical , see [4].

The following lemma shows how two, 4-representative graph embeddings on the
triple torus are equivalent.

Lemma 2.4.2: Let Ψa : G −→ S3 and Ψb : G −→ S3 be two embeddings of a graph
G into the triple torus S3. Suppose there exists an automorphism α : G −→ G

between G and itself. Then the embeddings Ψa : G −→ S3 and Ψb : G −→ S3 are
equivalent.

Proof: First we show that there is an orientation preserving surface homeomor-
phism η : S3 −→ S3. [Bernadi. O (2011)] argued that a map is a connected graph
embedded on a surface, considered up to orientation preserving homeomorphism.
This is obvious since a triple torus is always homeomorphic to itself. For easy iden-
tification of the preservation of the orientation, we consider the case where the
homeomorphism η is an identity map.

Finally we show that the map compositions Ψa ◦ η : G −→ S3 and α ◦Ψb : G −→ S3

are identical. Let e be an arc with end points v, w on S3, then η(e) = e since η is
identity map. Since Ψa is an embedding, Ψa((u, v)) = e. Similarly, let e be an edge
of graph G with end points u, v, i.e, edge (u, v). Then since Ψb is an embedding,
Ψb((u, v)) = e where e is an arc on S3. Applying η on e we have η(e) = e since e is
an identity map. Hence, the two embeddings Ψa and Ψb are equivalent.

The lemma below shows the existence of a disk D which contains the union of f
and all faces that share at least one vertex with f , given that f is the face of an
embedding which has representativity at least 3. The subsequent lemma shows
how this applies to 4-representative embeddings on the triple torus.

Lemma 2.4.3: Let f be a face of an embedding Ψ : G → Σ, where Σ is not a 2-
sphere. Let k be an integer such that ρ(Ψ, f) > 2k+ 1 and let Bk(f) be the union of
f and all faces that share at least one vertex with f . Then there is a disk Dk(f) ⊂ Σ
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which contains Bk(f) such that ∂Dk(f) ⊆ ∂Bk(f), see [7].

Proof: Any contractible simple closed curve γ ∈ Σ bounds a unique disc since Σ is
not a 2-sphere. Denote this disc by int(γ). Clearly, any disc containing Bk(f) must
contain the disk int(γ) for any simple closed curve γ in Bk(f). Let

Dk = Bk(f) ∪ {int(γ) | γ is a simple closed curve in Bk(f)}.

Each closed curve γ in Dk is homotopic to some closed curve contained in Bk(f)

since any part of γ in int(γ) can be moved by homotopy to the boundary of int(γ),
which is contained in Bk(f). Dk is simply connected and it is also connected by
construction and ∂Dk ⊆ ∂Bk(f). Since the only simply connected compact surfaces
are the 2-sphere and the closed disk, it suffices to show that Dk is a 2-manifold
with boundary. By construction it follows that Dk is closed. Moreover Dk is a
union of closed faces. Therefore, a singularity can only appear at the vertex of the
embedded graph. But by the following reason a true singularity is excluded. If g
and h are faces in Bk(f) meeting at a vertex x, let γ be a closed curve starting at
a point in int(f) leading to g going through x to h, and returning to f , such that
| z ∈ S1 | γ(z) ∈ Ψ(G) |≤ 2k + 1. Since ρ(f) > 2k + 1, γ bounds a disk in Dk.
Consequently all the faces at x which lie between g and h (one or the other side)
also lie in Dk.

Lemma 2.4.4: Let fa and fb be faces of two 4-representative embeddings Ψa and
Ψb which are equivalent on the triple torus, and let Fa be the union of fa and all
faces that share at least one vertex with fa. Similarly let Fb be the union of fb and
all faces that share at least one vertex with fb.

(i) The face fa is a disk D1
a with boundary cycle L1

a, and there is a disk D2
a ⊃ D1

a

with boundary cycle L2
a, such that F ⊆ D2

a and L2
a = ∂D2

a ⊆ ∂Fa. Similarly,
the face fb is a disk D1

b with boundary cycle L1
b , and there is a disk D2

b ⊃ D1
b

with boundary cycle L2
b , such that F ⊆ D2

b and L2
b = ∂D2

b ⊆ ∂Fb

(ii) Any path Pa in D2
a with both ends on L2

a must be a segment of L2
a or must

contain a vertex of L1
a and any path Pb in D2

b with both ends on L2
b must be a

segment of L2
b or must contain a vertex of L1

b

Proof.

i (i) is a special case of Lemma 2.4.3.

ii If (ii) fails, there would be a path Pa in D2
a internally disjoint from L2

a joining two
vertices of L2

a and not intersecting L1
a. Labeling the ends a, b of Pa appropriately,

Pa∪bL2
aa would separate (aL2

ab)
o from L1

a. But this contradicts the fact that since
L2
a ⊆ ∂Fa, every point of L2

a has an arc joining it to L1
a that does not intersect

the graph except at its endpoints. Similarly, there would be a path Pb in D2
b

12



internally disjoint from L2
b joining two vertices of L2

a and not intersecting L1
b .

Labeling the ends d, e of Pb appropriately, Pb ∪ dL2
be would separate (dL2

be)
o

from L1
b . But this contradicts the fact that since L2

b ⊆ ∂Fb, every point of L2
b has

an arc joining it to L1
b that does not intersect the graph except at its endpoints.

We now present the main theorem.

Theorem 2.4.5: Every 4-representative embedding on the triple torus contains two
NSCs which splits the triple torus into 3 connected components.

Proof: Suppose the theorem is false. By Lemma 2.3.1, there are critical 4-representative
embeddings Ψa and Ψb (of simple 2-connected graphs) with no NSC, while Ψ+

a =

Ψa ∪ vw and Ψ+
b = Ψb ∪ xy have NSCs. Suppose that vw is added across the face fa

and xy across the face fb. Let D1
a, D

2
a, L

1
a, L

2
a and let D1

b , D
2
b , L

1
b , L

2
b be as provided

by Lemma 2.4.4 for both fa and fb and let La = L1
a ∪ L2

a and Lb = L1
b ∪ L2

b .

Every NSC in Ψ+
a must contain the edge vw and every NSC in Ψ+

b must contain the
edge xy. Of all NSCs in Ψ+

a , let Γa be the one that minimises ∥ Γa ∩ D2
a ∥ (the

number of components in Γa ∩D2
a) and subject to this also minimises ∥ Γa ∩D1

a ∥.
Similarly let Γb be the one that minimises ∥ Γb ∩D2

b ∥ (the number of components
in Γb ∩D2

b) and subject to this also minimises ∥ Γb ∩D1
b ∥.

Then each component of Γa ∩D2
a contains at most one component of Γa ∩D1

a (and
using lemma 2.4.4 (ii)), at most 2 components of Γa ∩ L2

a. By the same argument,
each component of Γb ∩D2

b contains at most one component of Γb ∩D1
b (and using

lemma 2.4.4 (ii)), at most 2 components of Γb ∩ L2
b . We often abbreviate Γi

a to i.
(In later parts of the proof we also use components of Γ′

a, abbreviated i′, where
i = 1, 2, ... and components of Γ′

b, abbreviated j′, where j = 1, 2, ...). We represent
subsegments of component i as ij where j is a letter, e.g 3a is a subsegment of
3 = Γ3

a.

Since Ψa and Ψb are equivalent by lemma 2.4.2, all operations on Γa applies simi-
larly on Γb. We now focus on Γa and conclude to operations of Γb by equivalence of
the embeddings.

The minimality assumption further guarantees that any arc in D2
a that joins different

components Γi
a, Γ

j
a of Γ∩D2

a and is otherwise disjoint from Γa is essential. If it were
not essential then we could replace one of the segments iΓaj or jΓai with a section
of L2

a, reducing ∥ Γa ∩D2
a ∥. This is true even if the segment of L2

a we wish to use,
intersects other components of Γ2

a ∩D2
a, because those other components must also

be part of the segment of Γa we are replacing.

Let Γ3
a be the component of Γa ∩ D2

a that contains vw. Then Γ3
a ∩ La has four

components which we name 3a, 3b, 3c, 3d in order along Γa with 3a, 3d ⊂ L2
a and

3b, 3c ⊂ L1
a. We may assume that v ∈ 3b and w ∈ 3c. For ease of description, we

13



assume that D2
a is drawn as a circular disk and Γ3

a passes downwards through D2
a,

with 3a containing its top point and 3d its bottom point. Other than Γ3
a, no other

component of Γa ∩D2
a contains more than one component of Γa ∩ L1

a.

In fact, any other component Γi
a of Γa∩D2

a is one of two types. If ∥ Γi
a∩D1

a ∥= 1, i is
a segment of L2

a. Otherwise, ∥ Γi
a ∩La ∥= 3 and i includes two segments ia, ic of L2

a

and one segment ib of L1
a with ia, ib, ic in that order along Γa. Since Ψa is critical, Γa

intersects both (3bL1
a3c)

o and (3cL1
a3b)

o, otherwise we could reroute Γa to avoid (the
interior of) 3bΓa3c = vw. Moreover, each component of Γa ∩ D2

a which intersects
(3cL1

a3b)
o cannot be rerouted via 3dL2

a3a or we could reduce ∥ Γa ∩D1
a ∥.

Let Γ2
a denote any such component, with 2a, 2c ⊂ L2

a and 2b ⊂ L1
a. Note that Γ2

a

passes upwards through D2
a, so that the half of fa to the right of Γ3

a is also to the
right of Γ2

a. Since Γ2
a cannot be rerouted there is at least one component of Γa ∩D2

a

that intersects (2aL2
a2c)

o. Let Γ1
a denote any such component, which must be a

segment of L2
a and passes downwards through D2

a. In similar way, we can find Γ4
a

passing upwards through D2
a, intersecting (3aL2

a2c)
o at 4a and 4c and intersecting

(3bL1
a3c)

o at 4b. Then we must also have Γ5
a = 5 passing downwards through D2

a and
contained in (4cL2

a4a)
o. In general, it is not known whether a given component of

Γa∩La is trivial(single vertex) or not. The above description can be well represented
by figure 4.

Figure 4: Segments of Γ in D2 , see [2].

Let A0 denote the part of S3 to the left of Γa, and B0 the part to the right; Also B0

is the part of S3 to the left of Γb and C0 to the right. A0, B0 and C0 are punctured
tori. For i ≥ 1, let Ai denote the unique component of A0 ∩D2

a to which Γi
a belongs;

define Bi similarly. (If Γi
a ⊂ L2

a, one of Ai or Bi will be just Γi
a itself). We know that

A1 = A2, B2 = B3, A3 = A4 and B4 = B5.

We will frequently use the orthogonal arrangements of parallel paths to construct a
new NSC Γ′

a in Ψ+
a . In notation, OP (P, P ′;Q,Q′), P , P ′ will be paths in A0 and Q,

Q′ those in B0. There are two common ways in which this provides a contradiction.
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First, Γ′
a may avoid the edge vw, and so be an NSC for Ψa; we indicate this by

AOP (P, P ′;Q,Q′). Second, Γ′
a ∩D2

a may have fewer components than Γa ∩D2
a; we

indicate this by COP (P, P ′;Q,Q′).

Suppose P , P ′, Q, Q′ all lie in D2
a. When we form Γ′

a from Γa we delete the interiors
of four nontrivial segments of Γa, say S1, S2, S3, S4 and then add the interiors of
P , P ′, Q, Q′. Each end of Sj lies in some component of Γa ∩ D2

a. Suppose each
Sj intersects sj components of Γa ∩ D2

a, then sj ≥ 1. When we delete So
j , the

number of components in D2
a changes by 2 − sj. When we add P o, P ′o, Q, Q′o,

the number of components in D2
a changes by -4. Thus ∥ Γ′

a ∩ D2
a ∥=∥ Γa ∩ D2

a ∥
+4− s1 − s2 − s3 − s4.

The above analysis is valid even when the interiors of P , P ′, Q, Q′ intersect com-
ponents of Γa ∩ D2

a. If we do not have s1 = s2 = s3 = s4 = 1, then we have
COP (P, P ′;Q,Q′). In particular, let OOP [i](P, P ′;Q,Q′) denote the situation in
which some component i of Γa ∩D2

a contains an odd number of the eight endpoints
of P, P ′;Q,Q′ (counted with multiplicity). Then sj > 1 for some j, so this is a
special case of COP (P, P ′;Q,Q′).

Now we break into cases according to the order of 1,2,3,4,5 along Γa. For any
distinct components i1, i2,...,ik of Γa∩D2

a, we say that Γa has (i1i2, ..., ik) if i1, i2,...,ik
occur in that order along Γa.

(A) Suppose Γa has (1432). (Since we do not mention component 5, no assumption
is made about its position). By lemma 2.1.1, Γa ∩ (2aL2

a1)
o = Γa ∩ (4aL2

a3d)
o = ∅.

Note that by lemma 2.2, Γa ∩ (2cL2
a3a)

o ⊂ (3Γa2)
o.

For easy understanding of the subsequent arguments in the proof, figure 5 shows
how we construct new NSCs using corollary 2.2.2 in the first two cases here. The
solid chords are essential paths in A0, the dashed chords are essential paths in B0,
and the edges of Γ used by the new NSC are hatched.

Figure 5: Construction of new NSCs in the first 2 cases of A. Case 1 (left), case 2
(right) , see [2].

First, suppose that Γa ∩ (3cL1
a2b)

o = ∅. Let P = 2c(∂B3)3a (P is just 2cL2
a3a if

Γa∩ (2cL2
a3a)

o = ∅). Since Γa∩ (2cL2
a3a)

o is contained in (3Γa2)
o, we have P o∩Γa ⊂
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(3Γa2)
o. Now we have AOP (2aL2

a1, 4aL
2
a3d; 3cL

1
a2b, P ). This is illustrated on the

left of figure 5. Note that (3Γ2)o is not hatched, showing that this part of Γ may be
used by P if necessary.

Second, suppose that Γa ∩ (2bL1
a3b)

o = ∅. Since Γ1
a ∩ (2cL2

a3a)
o ⊂ (3Γa2)

o, we
may have OOP [1](2aL2

a1, 4aL
2
a3d; 2cL

2
a3a, 2bL

1
a3b). This is illustrated on the right of

figure 5 Though these two cases appear similar, they are different.

Finally, we may suppose that there exists Γ6
a = 6 that intersects (2bL1

a3b)
o and

Γ7
a = 7 that intersects (3cL1

a2b)
o. By lemma 2.2, 2,3,6 and 7 are the only com-

ponents of Γa ∩ D2
a intersecting B3, and Γa has (3627). If Γa has (271) then

we have OOP [1](2aL2
a1, 4aL

2
a3d; 2bL

1
a6b, 3cL

1
a7b). If Γa has (173) then we have

OOP [1](2aL2
a1, 4aL

2
a3d; 2bL

2
a6b, 7bL

1
a2b). By symmetry we may also exclude the cases

where Γa has (1234), (5234), or (5432).

(B) Suppose Γa has (1342). By Lemma 2.1.1, Γa ∩ (2aL2
a1)

o = Γa ∩ (3aL2
a4c)

o = ∅.
Suppose that Γa∩(2cL2

a3a)
o = ∅, then we have OOP [1](2aL2

a1, 3aL
2
a4c; 2cL

2
a3a, 2bL

1
a3b).

Therefore, we may assume Γa ∩ (2cL2
a3a) ̸= ∅, and similarly Γa ∩ (3dL2

a2a)
o ̸= ∅. Let

Γ6
a = 6 intersect (2cL2

a3a)
o, and Γ7

a = 7 intersect (3dL2
a2a)

o. By lemma 2.2, 2,3,6,7
are the only components of Γa ∩ D2

a intersecting B3 and Γa has (3627). Then we
have OOP [1](2aL2

a1, 3aL
2
a4c; 2cL

2
a6, 3dL

2
a7). Figure 6 shows how new NSCs are con-

structed in this case.

Figure 6: Construction of new NSCs in the first 2 cases of B. Case 1 (left), case 2
(right)

By symmetry, we may also exclude the cases where Γa has (1243), (5324) or
(5423).

Now we know that Γa must have either (1324) or (1423), and either (5243) or
(5342). So the overall order must be (13524) or (14253). These cases are symmet-
ric, so let us assume the order is (14253). Given this order, there is a symmetry that
reverses Γa and swaps A0 and B0. For our standard picture of D2

a, this amounts to
rotating D2

a by 180o and reversing Γa.

Consider the components of Γa∩D2
a that intersect (2aL2

a2c)
o. Each such component

lies in 3Γa4)
o, otherwise we could choose that component as 1 and have case (A) or
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(B). Let 1 be the first and 1′ the last such component along 3Γa4. (Possibly 1 = 1′).
By Lemma 2.2 there are at most three such components, and 1 is the first and 1′ the
last, along 2aL2

a2c. Thus, Γa ∩ (2aL2
a1)

o = Γ(1′L2
a2c)

o = ∅. If there are three distinct
components 1, 1⋆, 1′ in order along Γa, then 3aL2

a4c violates CS(1L2
a1

⋆, 1′L2
a2c)(i)

in A0. Therefore, there are at most two such components. Similarly, at most two
components of Γa∩D2

a intersects (4cL2
a4a)

o, they lie in (2Γa3)
o and if 5 is the first and

5′ the last along 2Γa3 (possibly 5=5′), then Γa∩ (4cL2
a5

′)o = Γa∩ (5L2
a4a)

o = ∅.

If Γa ∩ (2cL2
a3a)

o ̸= ∅, we denote the component of Γa ∩ D2
a closest to 3a by 6,

and that closest to 2c by 6′ (possibly 6=6′). If Γa ∩ (4aL2
a3d)

o ̸= ∅, we denote the
component of Γa∩D2

a closest to 2a by 7 and that closest to 3d by 7′ (possibly 7=7′).
By Lemma 2.2, Γa has (366′277′) suitably modified to identify components that are
the same and delete components that do not exist. Similarly, if Γa ∩ (3aL2

a4c)
o ̸= ∅,

we denote the component of Γa ∩D2
a closest to 3a by 8 and that closest to 4c by 8′

(possibly 8=8′). If Γa∩(4aL2
a3d)

o ̸= ∅ we denote the component of Γa∩D2
a closest to

4a by 9 and that closest to 3d by 9′ (possibly 9=9′). By Lemma 2.2, Γa has (388′499′)
suitably modified. Note that 6, 6′, 7, 7′, 8, 8′, 9, 9′ may or may not intersect L1

a.

Claim 1. At least one of 7 and 8 exists

Proof. If not, we have the OP (3bL1
a4b, 3aL

2
a4c; 3cL

1
a2b, 3dL

2
a2a) which produces Γ′

a

with ∥ Γ′
a ∩ D2

a ∥=∥ Γa ∩ D2
a ∥ and ∥ Γ′

a ∩ D1
a ∥=∥ Γa ∩ D1

a ∥ −2 contradicting the
minimallity of Γa.

Claim 2. At most one of 6 and 7 exists. By symmetry, at most one of 8 and 9
exists.

Proof. Suppose both 6 and 7 exists. By Lemma 2.2(i), 2, 3, 7 are the only com-
ponents of Γa ∩ D2

a intersecting B3, and Γa has (3627). To avoid an arc (not nec-
essarily path) from 4 to 5 in B5 violating CS(6L2

a3a, 7L
2
a2a)(i) in B0, Γa must have

(275) when it has (374), and must have (573) when it has (462). So Γa has either
(364275) or (346257).

Case (2.1) Suppose Γa has (364275). If 8 does not exist, let P = 3aL2
a4c and

P ′ = 3bL1
a4b; If 9 does not exist, let P = 4aL2

a3d and P ′ = 4bL1
a3c. In either case we

have OOP [2](P, P ′; 3dL2
a7, 2cL

2
a6). Therefore, 8 and 9 exist. By lemma 1.3, 3,4,8,9

are the only components of Γa ∩D2
a intersecting A3, and Γa has (3849).

To avoid an arc from 1 to 2 in A1 violating CS(3aL2
a8, 4aL

2
a9)(i) in A0, Γa must have

(429) when it has (318), and must have (923) when it has (814). So Γa has either
(318429) or (381492). If Γa has (318429) we have OOP [2](8L2

a4c, 9L
2
a3d; 6L

2
a3a, 7L

2
a2a).

If Γa has (381492) we have OOP [5](8L2
a4c, 9L

2
a3d; 6L

2
a3a, 5L

2
a4a).

Case (2.2) Suppose Γa has (346257). If Γa ∩ (3aL2
a4c)

o = ∅ let P = 3aL2
a4c and

P ′ = 3bL1
a4b; if Γa ∩ (4aL2

a3d)
o = ∅ let P = 4aL2

a3d and P ′ = 4bL2
a3c. In either case
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we have
OOP [5](P, P ′; 3dL2

a7, 5L
2
a4a).

Claim 3. If 7 exists, then 7 = 7′ and Γa has (275). By symmetry, if 8 exists then
8 = 8′ and Γa has (1′84).

Proof. We first show that Γa does not have (364). Suppose Γa has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P , P ′ to be either 3aL2

a4c,
3bL1

a4b or 4bL1
a3c, 4aL

1
a3d. Then we have OOP [5](P, P ′; 3dL2

a7
′, 5L2

a4a).

If 7 ̸= 7′ then to avoid an arc from 4 to 5 violating CS(3dL2
a7

′, 7L2
a2a)(i) in B0,

Γa must have (2757′3) and hence (57′3). Thus 7 = 7′, and since Γa does not have
(57′3) = (573), it must have (275).

Claim 4. If 6 exists then 6 = 6′ and Γ has (462). By symmetry, if 9 exists then 9 = 9′

and Γa has (492).

Proof. We first show that Γa does not have (364). Suppose Γa has (364). Since at
most one of 8 and 9 exists by Claim 2, we may take paths P , P ′ to be either 3aL2

a4c,
3bL2

a4b or 4bL1
a3c, 4aL

2
a3d. Then we have OOP [5](P, P ′; 6L2

a3a, 5L
2
a4a).

If 6 ̸= 6′ then to avoid an arc from 4 to 5 violating CS(2cL2
a6

′, 6L2
a3a)(i) in B0, Γa

must have (3646′2) and hence (462).

Now from claim 1 we may assume without loss of generality that 7 exists. By claim
2, 6 does not exist, and at most one of 8 or 9 exists. If 8 exists then Γa has (31′84275)
by claim 3, and we get OOP [1′](1′L2

a2c, 8L
2
a4c; 5L

2
a4a, 7L

2
a2a). If 9 exists, then Γa has

(31′49275) by claim 4 and we get OOP [1′](1′L2
a2c, 4aL

2
a9; 5L

2
a4a, 7L

2
a2a). Therefore,

none of 6, 8 or 9 exists.

To summarise; Γa has (314275), 7 exists, 7 = 7′, and none of 6, 8, or 9 exists.
To find new NSCs in this situation, we use paths that may lie outside disk D2

a. By
Lemma 2.4.4 (ii), every edge of L2

a belongs to a face , contained in D2
a that includes

a vertex of L1
a. Applying this to an edge of L2

a with at least one end in 1, we obtain
a face g with at least one vertex v1 of 1 and at least one vertex v2 of 2b. The only
components of Γa ∩ D2

a that g may intersect are 1, 2 and (if 1 = 1′) 1′. By lemma
2.4.4 (ii), g ∩ 1 and g ∩ 1′ have at most one component each. Apply lemma 2.4.4 to
g, letting E1 and E2 be the disks, with boundaries M1 and M2.

Let O12 be an arc from v1 to v2 inside g, and let O34 be an arc from an interior point
v3 of vw to a vertex v4 of 4b inside fa ∩ A0. Cut A0 along O12 and O34; the result is
a disk with clockwise boundary (in compressed notation).

v1O12v2Γ
−1
a v4O

−1
34 v3Γ

−1
a v2O

−1
12 v1Γ

−1
a v3O34v4Γ

−1
a v1

(We do not distinguish between two copies of O12, O34, v1, v2, v3, v4 since it will be
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clear which one we mean). This disk contains a slightly smaller disk R, whose
boundary we divide into left, right, top and bottom segments for convenience.
Reading bottom to top, R has Q1 = v1Γ

−1
a 3d(L2

a)−14aΓ−1
a v1 on the left and Q2 =

v2Γa3aL
2
a4cΓav2 on the right. Reading left to right, R has O12 on the top and O−1

12

on the bottom. We use >, <, ≥, ≤ to denote order along Q1 or Q2, so that, for
example, u > v means u is above v. Along Q1 we have v1 < 3d < 4a < v1, with
4a < 1′ < v1 if 1′ ̸= 1. Along Q2 we have v2 < 2c < 7 < 5 < 3a < 4c < 2a < v2.

Now examining (M1 ∪ M2) ∩ R, there must be vertices x1 > x2 > x3 > x4 on Q1,
y1 > y2 > y3 > y4 on Q2 and paths P1, P2, P3, P4 in R such that

(i) P1, P2, P3, P4 are vertex-disjoint, except that P1 and P2 may intersect at either
both of v1, v2;

(ii) Each Pi has ends xi, yi and is otherwise disjoint from ∂R;

(iii) P1 and P4 are segments of M1, while P2 and P3 are segments of M2; and

(iv) x1 ∈ 1, y1 ∈ 2, x4 ∈ 1 or 1′, y4 ∈ 2

The paths P1 and P4 are just the obvious segments of ∂g = M1. If M2 did not contain
two disjoint paths P2, P3 as described, then we could find a circle in E2 that was
Non-contractible in S3, contradicting the fact that E2 is a disk.

If an end of P2 or P3 belongs to (4aL2
a3d)

o or (3aL2
a4c)

o, then the path is not essential
because it does not have both ends on Γa. However it can be extended to essential
path in more than one way. Given xi > 3d, define X+

i to be 4aL2
axi if xi < 4a or xi

if xi ⩾ 4a. Given xi < 4a, define X−
i to be xiL

2
a3d if xi > 3d or xi otherwise. Define

Y +
i and Y −

i on the right similarly based on the relationship of yi to 4c and 3a.

Let w5 be the last vertex of 5 along Γa. Note that 5L2
a4a = w5L

2
a4a. Suppose first that

x3 < 4a. Then necessarily x4 ∈ 1. If y3 < w5 then OP (P1, X
−
3 ∪ P3; 5L

2
a4a, 7L

2
a2a)

produces a separating cycle which does not use 4b; replace vw by vL1
aw to obtain a

separating cycle avoiding vw. If w5 ⩽ y3 < 4c, then since x4 ∈ 1 we have AOP (X−
3 ∪

P3 ∪ Y −
3 , P4; 2cL

2
a3a, 3dL

2
a7 ∪ 7 ∪ 7L2

a2a). If y3 ⩾ 4c then we have the rather compli-
cated AOP (P1, X

−
3 ∪P3∪y3Γ

−1
a 4c∪4c(L2

a)
−13a; 2cL2

a3a, 3dL
2
a7∪7Γa5∪5L2

a4a).

Now suppose that x3 ⩾ 4a, and that y2 ⩽ 3a. If Γa ∩ (3cL1
a2b)

o = ∅ then we have
AOP (P2, P3; 2cL

2
a3a, 3cL

2
a2b). Otherwise 7 must intersect 3cL1

a2b so 7 has segments
7a, 7c, on L2

a and 7b on L1
a. Then we have AOP (3aL2

a4c, 4bL
1
a3c; 3cL

1
a7b, 3dL

2
a7a).

Finally, suppose that X3 ⩾ 4a and y2 > 3a. If x4 ∈ 1, then OP (P2∪Y +
2 , P4; 5L

2
a4a, 7L

2
a2a)

produces a separating cycle that does not use 4b; replace vw by vL1
aw to ob-

tain a separating cycle avoiding vw. If x4 /∈ 1 then 1 ̸= 1′ and x4 ∈ 1′. Let
P ′
2 = P2 ∪ y2Γ

−1
a 4c ∪ 4c(L2

a)
−3a if y2 ⩾ 4c and P ′

2 = P2 ∪ Y −
2 if 3a < y2 < 4c.

Then we have AOP (P4, P
−
2 ; 2cL2

a3a, 3dL
2
a7 ∪ 7Γa5 ∪ 5L2

a4a).
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Since the embeddings Ψa and Ψb are equivalent by lemma 2.4.2, all operations
applying on Γa also applies similarly on Γb. We have covered all cases, so this
concludes the proof.

3 Conclusion.

After analysing Ellingman & Zhao’s method and applying it to the proof of our main
theorem it is found that the method works efficiently and our results are consistent
with those obtained by them in their proof. Therefore it is concluded here that ev-
ery 4-representative graph embedding on the triple torus contains two NSCs. The
notions of equivalence in graph embeddings and that of homeomorphism of sur-
faces as defined topologically were used in extending Ellingman & Zhao’s method
to apply on a triple torus.
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